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ABSTRACT 

The dynamics of viscous f l u i d  transmission l i n e s  have been in- 

.vestigated with emphasis being placed upon topics  of i n t e re s t  i n  

both f l u i d  systems engineering and acoust ic  f i e l d s .  

An exact solut ion of t h e  f i r s t -o rde r  Navier-Stokes equation w a s  

obtained t o  describe the  dynamics of a viscous, compressible l i qu id  

i n  closed conduits.  This solut ion demonstrated the  existence of an 

i n f i n i t e  set  of viscous modes of propagation. Calculations were 

made of t h e  s p a t i a l  a t tenuat ion factor  and phase ve loc i ty  for sev- 

e r a l  modes f o r  both r i g i d  and e l a s t i c  f l ex ib l e  conduit wal ls .  Also 

calculated were the  ve loc i ty  p r o f i l e s  near an osc i l l a t ing  pis ton 

and subsequently the s t a t e  of shear stress near the  pis ton,  

Engineering models, based upon approximations of t he  zeroth 

mode, were developed and experimental s tud ies  were made of Che fare- 

quency response and t r ans i en t  response of a viscous f l u i d  transmission 

l ine .  

I n  a viscous f l u i d  transmission l i ne ,  there  e x i s t s  an i n f i n i t e  

set of higher order viscous modes of propagation. These modes .are 

generated a t  the  l i n e  ends or a t  points  of discont inui ty  and e x i s t  

a t  a l l  frequencies. Each higher mode possesses a r e l a t i v e  cutoff  

frequency below which the  a t tenuat ion  i s  very grea t .  

mental study, using a flow v isua l iza t ion  technique t o  observe the  

s ta te  of shear stress, v e r i f i e d  t h e  existence of these modes. 

An experi- 
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The transfer equation model discussed in this work has been 

experimentally verified over the range of parameters 

’0.00001 < % <‘ 0.02 
CO 310 

0.5 < ‘wL - < 10.0. 
C 
0 

The tapered-lumped model developed was found to be of good utility 

in modeling a transmission line when part of a complex system, 

iii 



P 

TABLE OF CONTENTS 

Chapter 

I o  INTRODUCTION TO TITI3 PROBLEM o o e o o e e * e 1 

In t roduc t ion .  o . .  . e e e ,, e o  e * .  . 1 
Lumped and Distributed Systems . . e e . a a e 2 
Mathematical Description of the Problem a . . o 3 
Scope of Treat ise  . e . e . . . . . + 7 
Computer Program Lis t ings  e e e . ,, e - 8 

In t roduc t ion .  . e e ., . . e e e 9 
Distributed Parameter Models . e a e . . . 9 
Fluid Transmission Line Concept . . e e e 18 
LumpedModels e . . . . e . . e . 23 
Conduit Wall Effects  e . . . e . ., e 32 

I11 e EXACT SOLUTION OF FIRST-ORDER NAVIER-STOKES 
EQUATIONSo. e o .  ., e e e e a ., e .  a e e 36 

Introduction e e a e e e e 36 
Mathematical Formulation of the Problem ., e II 36 
S o l u t i o n . .  e e e * .  e . .  . 38 

I V .  APPLICATION OF THE EXACT SOLUTION TO THE CASE 
OF A R I G I D  FLUID CONDUIT e . e e . . e e e e 45 

Introduction e e e e e e e . e e e e . e 45 
Character is t ic  Equations f o r  Eigenvalues ., a e 45 
Approximate Form of Zeroth Mode Equations . . 47 
Derivation of Zeroth Mode Transfer Equations a e 54 
Zeroth Mode Frequency Response e e e o 61 
Zeroth Mode Transient Response a e - 64 

V. EXPERIMENTAL VERIFICATION OF ZEROTH MODE 
TRANSFER EQUATIONS * e s e e * 0 e e o o e e o e 72 

Introduction e . e e . ,, . - .. e e . . e e 72 
Experimental Frequency Response ., ,, . e 8 72 
Experimental Transient Response e e . e e 74 



Chapter page 

VI, THE HIGHER MODES OF VISCOUS PROPAGATION . . . . . . 80 

Introduction . . . . . . . . . . e . . . . 80 
Higher Mode Eigenvalues f o r  Rigid Conduit . e . e 6 80 
Velocity P r o f i l e s  . . , . a e . . E . . e 0 86 
Ser ies  Expansion e . , . . . . . . . . . . . . e . 87 
Experimental Invest igat ion of Viscous Modes - = 95 
Discussion . . . e . . . . . . . . . . . 99 

VII. NON-RIGID WALL EFFECTS . . . e . . . . . . . e . e 103 
Introduction e . . . . e . . a . . . 103 
Elastlc Flexible  Walls . ., . . . . e e . 104 
Elastic S t i f f  Walls . e . e . . e e e e 111 

V I I I .  DEVELOPMENT OF TAPERED-LUMPED MODEL . e . . , . e . . e 114 

Introduction (I ., . e I. . . . e 114 
Development of Model e e e e e . e e . e . 115 
Comparison of Exact and Approximate Models e e a 116 
Application of Model i n  Problem Solution e . 128 
Discuss iono  a a = e e ., e o .  e *136 

I X e  SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS o o e e e o o o o o 137 

Summary e , .  e ., * .  ., e e * .  . . e o137 
Conclusions . e e e e . . . . e . e a 138 
Recommendations f o r  Future Study . e e e . 139 

APPENDIX A - CALCULATION OF EIGENVALUES e (I e e . 143 

APPENDIX B - INVERSE LAPLACE TRANSFORMATION FOR 
VISCOUS WATER HAMMER PROBLEM . e . * . e . . 148 

APPENDIX C - COMl?UTER PROGRAM LISTINGS e . e . e . ,, 152 

V 



LIST OF TABIZS 

Table Page 

I. 

I1 0 

I11 0 

I V ,  

Electrical  Analogs e e e e . . e . . . e 29 

Values of $Os and Y*s I) . e ,, e 31 

Tabulation of the F b s t  Six Coeff ie lents  of 
the  SerPes Expansion f o r  a Pis ton 
Osc i l la t ing  i n  a R t g i d  Conduft (Fm = O02,  
D m = O o 0 9 )  e e e 0 0 0 95 

Valve Area Data for Example Problem 1 e . e 129 



LIST OF FIGURES 

Figure Page 

2.1 Suddenly Closed Valve - Classical  Water Hammer Problem ., e 11 

2.2 Actual Pressure Versus Time Plot f o r  Suddenly Closed 
Valve * , .  . . . e . .  . . . . . e 0 0 0 0 e e e 0 e 13 

2.3 Pressure f o r  Suddenly Closed Valve From Llnear 
FrSctionModel . e , e e . . . e e e e e . 16 

2.4 Four-Temn5.nal Representation of Fluid Conduit e . e 19 

2.5 Ser ies  Arrangement of Two Fluid Components e e . e 20 

2.6 Combined Ser ies  Elements . . . e . . e e e 22 

2.7 Lumped Model Inertance Element e e e e e 24 

2.8 Lumped Model Capacitance Element e ., e . e . e . 25 

2.9 Lumped Model Resistive Element e e e e e e . 26 

2.10 Fundamental Representation of Lumped Line ., e . e e 27 

2.11 Elec t r i ca l  Analogy f o r  Fundamental Lumped 
Conduit With F r i c t ion  . e ., e . a = 1) 29 

2,12 Variations of Elec t r ic  Analogs e . e . 4 e 29 

2.13 Analog f o r  n-Segmented Lumped Conduit Wlth Fr ic t ion  30 

2.14 Tapered Lossless Analog e ., e e e e e e 31 

2.15 Propagation Velocity Versus Frequency f o r  Nonvlscous 
F l ~ d o 0 ~ 0 ~ . . ~ ~ ~ ~ ~ o ~ . e ~ a . ~ 4 0 e e a ~ o  35 

3.1 Coordinate System . e . . e e . . . 36 

4.1 Ratio of Real Par t  of Propagation Operator From 
Equation (4.7) t o  Exact Value Versus Radial 
Frequency Number e I) . e e e . e . 50 

v i i  



Figure 

4.2 Ratio of Dimensionless Phase Velocity From 
Equation (4.7) t o  Exact Value Versus 
Radial Frequency Number . . e . . e . . . 51 

4,3 Typical Zeroth Mode Velocity P ro f i l e s  Due t o  a 
Sinusoidal Axial Pressure Gradient . e . e 53 

4,4 Diagram of Fluid Conduit f o r  Zeroth Mode Transfer 
Equations e . . . ., . e . e . e e e 56 

405 Diagram of Fluid Conduit With Averaged Quant i t ies  
a t E a c h E n d .  o .  e . .  . *  * . .  E 57 

4,6 Variation of the Zeroth Mode Spat ia l  Attenuation 
Faetor With Axial Frequency Number e e e e e 0 59 

e Dimensionless Phase Velocity, /co,  Versus Axial 4.7 
Frequency Number f o r  the Zeroth Mode a o D o 0 ,, e 0 60 

4.8 Amplitude of t he  Zeroth Mode Character is t ic  
Impedance Versus Axial Frequency Number 0 0 0 0 0 62 

4,9 Phase of the  Zeroth Mode Character is t ic  
Impedance Versus Axial Frequency Number a ., 0 0 0 o 63 

4,lO Amplitude of % From Equation (4.25) f o r  the Case of 
Zero Terminatfon Impedance ., e e (I e e . 65 

4011. Water Hammer Pressure History From Equation (4,331 
Axfal Damping Number 0.001 e ., e ., o 0 0 0 0 e 0 69 

4.12 Water Hammer Pressure History From Equation (4.33) 
Axial Damping Number 0.02 . e e a ., n e 0 70 

4,13 Water H a m m e r  Pressure History From Equation (4,331 
Axial Damping Number 0-1 e e e 71 

5.1 Experimental Model f o r  Studying the Frequeney 
Response of a Fluid Line ., e o o o o 0 0 0, 0 0 '73 

5.2 Experimental Amplitude, [vp&,Vo], Obtained 
From the  Frequeney AnalySgs of an 80 Foot 
Lfne With Water as the Working Fluid a a e 0 e 0 0 75 

5.3 Experimental Amplftude [~pOcoVO] Obtained 
From the  Frequeney Analysfs of an 80 Foot 
Line With MIL 5606 as the  Working Fluid I) e a 76 

5,4 Experimental Model f o r  Studying the  Transient 
Response , e - e . a a 77 

Vifi 



Figure 

5.5 

6.1 

6.2 

6 -4 

6.10 

7.1 

7-2 

7.3 

7 *4 

Typical Pressure History Traces Obtained From the 
Hodel of Figure 5.4 e e . e . e . . e . e . . 78 

Plo t  of the Spat ia l  Attenuation Factor Versus 
Radial Frequency Number f o r  Three Modes . . . . . a 82 

Plo t  of the Dimensionless Phase Velocity Versus 
Radial Frequency Number f o r  Three Modes e - e 0 0 83 

Spa t i a l  Attenuation Factor Yrro Versus Radial 
Frequency Number f o r  the F i r s t  Mode . I e e 0 0 84 

Dimensionless Phase Velocity yeo  Versus Radial 
Frequency Number f o r  the F i r s t  Mode . 0 0 e 85 

Axial Velocity P ro f i l e  Functlon, Fzn(r), f o r  

Axial Velocity P ro f i l e  Function, F, (r), f o r  

Fowr Modes (F, = 0.2, D, = 0.01) . . e e e o 89 

Four Modes (Fnr = L O O ,  DnP = O.Ol$ 

Near Pis ton Velocity Prof i le  (r Dependent Pa r t  
Only) Calculated From Six Terms of Equation 
(6,3) With Fnr = 0,2, Dnr = 0.01 e . a e e 94 

0 0 90 

Schematic of Experimental Apparatus Used t o  
Visually Observe the S ta t e  of Shear S t r e s s  
Near an Osci l la t ing Pis ton e e ., e o 0 E E 0 96 

Photographs of Experimentally Observed S t a t e  
of S h e a r s t r e s s  e . . .  e e e . . 98 

Lines of Constant Axial Velocity Gradient 
Obtained From Figure 6.8 a (I e e a e 100 

Zeroth Mode Spa t i a l  Attenuation Versus Fnr 
f o r  a Rigid and an Elas t ic  Flexible  W a l l  e 0 e . o 107 

Dimensionless Phase Velocity, c /eo Versus 
Fm f o r  a Rigid and an Elas t ic  Flexible  Wall e e ., 108 

F i r s t  Mode Spa t i a l  Attenuation Versus F, f o r  a 

Dimensronless Phase Velocity, /eo9 Versus F, 

Rigid and an Elas t ic  Flexible  Wall e . . e e . e 109 
e 

f o r  a Rigid and an Elas t ic  Flexible Wall . . o 110 

ix 



Figure Page 

8.1 Variation of the Approximate Model Parameter 
With Axial Damping Number . . e e e 0 0 117 *en 

8,2 Variation of the  Approximate Model Parameter 
Gcn Wfth Axial Damping Number . . . . . . . . . 118 

8.3 Variation of the  Approximate Model Parameter 
Fsn With Axial Damping Number . ., . e . . 119 

8 04 Variation of the  Approximate Model Parameter 
Gsn With Axial Damping Number ., . . 0 . 120 

8,5 Comparison of One-Term Approximation of 
Cosh Ria) With Exact Value (Amplitude and 
Phase), Dnz = 0,Ol e ., ., e I. . . . e 122 

Cosh T(iw) With Exact Value (Amplitude and 
806 Compar-fson of One-Term Approximation of 

Phase), Dnz = 0.0001 e e e . e e I. . e 9 123 

8,7 Comparison of Two-Term Approxtmation of 
Cosh r(im) With Exact Value (Amplitude and 
Phase), Dnz = 0,OP , . e . e e ., . . ., a 124 

Cosh T(iw) With Exact Value (Amplitude and 
Phase), DnZ; = 0,0001 e . . e e e e 0 125 

808 Comparison of Two-Term Approximation of 

8-9 Cornpartson of &act Solution (Zeroth Mode) and 
One Term of the Tapered-Lumped Model f o r  the 
Water Hammer Problem ., . e . e . a 127 

8 J O  Schematfc of Physical Layout f o r  Example Problem 1 129 

8.11 Comparison of Analytical Predict ion Using One Term 
of Model Wfth Experimental Results Obtained by 
NASA e e e .  e e a ., e e e ~ 3 1  

8,12 Schematic of Physfcal Layout f o r  Example Problem 2 e 6 132 

8,13 Amplitude and Phase of X(iw)/Y(io3) Versus Frequency 
Wtth and Without Line Effects  f o r  Example Problem 2 134 

X 



CHAPTER I 

INTRODUCTION TO THE PROBLEM 

Introduction 

"he increased sophis t icat ion of present-day and proposed f l u i d  

systems has demanded t h a t  the engineer employ increasingly complex 

methods of analysis  f o r  studying these systems. 

f o r  the case of non-steady f l o w s  i n  f l u i d  conduits. 

engineer, the  present ly  avai lable  procedures f o r  analyzing f l d d  trans- 

mission Sines may present one of %he following problems: 

This is indeed t r u e  

To the  pract ic ing 

1. PerpEexing mathematical d e t a i l  when dealing d t h  

9Qexac%pp o r  dfstribuked parameter models. 

2. A 1 1  problems, except the most elementary, demand 

extensive use of the  d i g f t a l  computer f o r  both 

d is t r ibu ted  model and graphical methods. 

Oversimplified lumped parameter models lead t o  in-  

adequate answers f o r  many typ ica l  problems, 

3 .  

The analyst  thwj f i n d s  tha t ,  except f o r  a few simple and special-  

i zed  problems, i t  is very d i f f i c u l t  t o  approach O*exact answersgv. These 

problems do not, i n  any ease, l essen  the  need for adequate transmissfon 

l i n e  models useful f o r  the study of everyday flu3.d systems. 

A typ ica l  system may contasn many components such as pumps, 

valves, actuators ,  reservoirs ,  motors, etc., general ly  connected 

a 
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together i n  some manner by f l u i d  l i nes ,  A complete analysis  of such a 

system must involve not only the components but a l s o  the f l u l d  l ines .  

This is pa r t i cu la r ly  t r u e  f o r  unsteady condi t ions where the  e f f e c t s  of 

the f l u i d  l i n e s  have, f n  some cases, caused otherwise well-designed 

systems t o  be fnoperable, 

I n  general ,  t he  area of study associated with the  flow of fluids 

through conduits is ca l l ed  9QConduit Dynamicsqe, 

of Conduit Dynamics t o  t h e  study of a f l u i d  l i n e  involves a complete 

study of the  f l u i d  I tself  plus  a study of t he  e f f ec t  which the  pipe or 

conduit has upon the  f lu id .  

volving the  e f f ec t  of f l u i d  compressibility, l a rge  e r ro r s  may occur i f  

the compressibil i ty e f f ec t  due t o  t he  e l a s t i c i t y  of the  N p e  walls i s  

not included. 

A rigorous appl icat ion 

For example, i n  making computations fn- 

Lumped and Distributed Systems 

The physical propert ies  of" all real systems are dfs t r ibu ted  with 

respect t o  time and space, The extent o r  influence of t h i s  d i s t r ibu t ive  

e f f ec t  va r i e s  great ly ,  depending on the pa r t i cu la r  system belng studied, 

For t he  case of the f l u i d  systems which w t l 1  be of concerng t h i s  dPs- 

t r i bu t ive  e f f ec t  may o r  may not need be eonsfdered, 

physical systems which are described by relatSons involving d is t r ibu ted  

parameters are ca l led  d is t r ibu ted  parameter systems. 

equations f o r  d i s t r lbu ted  systems a r e  general ly  p a r t i a l  d i f f e r e n t i a l  

equations, 

a r e  ca l l ed  lumped parameter systems, 

lumped systems a r e  generally ordinary d i f f e r e n t i a l  equations, 

I n  general, those 

The dynmfcal  

Those systems whleh do not involve d is t r ibu ted  parameters 

The dynamical equations for 

I f  one 
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takes a d is t r ibu ted  parameter system, averages the e f f ec t  of t he  dis-  

t r ibu ted  parameted s )  

then one has PBlumpedF9.the system. 

t r ibu ted  system by a lumped system o r  systems depends upon the  operating 

and concentrates t h i s  average at some point , 
!&e v a l i d i t y  of approximating a dis- 

conditions of the  system and a l so  upon the manner i n  which the lumping 

is performed, 

Mathematical Description of the Problem 

The exact descr ipt ion of the motion of a f l u i d  f o r  any type of 

f l u i d  mechanics problem neeessaPiPy involves the  simultaneous so lu t ion  

of the equations of change f o r  the f luid.  I n  mathematical terms, t h i s  

descr ipt ion includes: 

vat ion of mass, (b) an equation of motion expressing the conservation 

of momentum, (e)  an energy equation expressing the conservation of 

energy, and (d) one o r  more equations which r e l a t e  the response of the 

f l u i d  t o  thermal and mechanical stresses (equations of s t a t e ) .  

t ion,  9% is  necessary t o  prescr ibe the  motion at the f l u i d  boundary 

which, f o r  the problem dealt  w5th here, means one needs a descr ipt ion of 

the motion of the conduft walls, 

equations of change f o r  the e o n d d t  i t s e l f ,  

( a )  a contfnuity equation expressing the  conser- 

I n  addi- 

This may involve an addi t ional  set  of 

An exact description, io@., an exact so lu t ion  of the governing 

equations, i s  nearly impossible. 

ing assumptions, i t  is possible t o  a r r i v e  at so lu t ions  which f i e ld  

rather good quant t ta t ive  descr ipt ions of the system being analyzed. 

many cases, these simplify2.ng assumptions are questlonable, 

the  discussions which follow, an e f f o r t  w f l l  be made t o  present, i n  an 

However, by means of v d o u s  simplify- 

In 

By means of 

organized manner? the work which has been accomplished by previous 
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invest igators ,  Indications W a l l  be made, where possible, of t h e  applf- 

cat ion and l imi t a t ion  of t he  ideaso 

If one adopts an Eulerian point of v i e w ,  t ha t  is, i f  one def ines  

the  f l u i d  motion r e l a t i v e  t o  a f ixed  s p a t i a l  coordinate system, then the  

f1d.d equations of change may be wr i t ten  as follows (1). 

(a) Continuity Equation 

A mathematical statement of the conservation of mass f o r  a f l u i d  is 
\ 

where p and ? a req  respectively,  the  instantaneous f l u i d  density and 

vector ve loc i ty  i n  terms of the s p a t i a l  coordinate loca t ion  and t i m e ,  

(b) EquatPon of Motion 

The comemat ion  of momentum f o r  t he  f l d d  9s expressed ’by t h e  

force equation 

I n  t h i s  equation, 
- 
F E veetor body force per unlt mass 

p t o t a l  f l u i d  pressure 

p shear v i scos i ty  

p‘ = d i l r t a t f o n a l  v i scos i ty  

pB 1 bulk v tscos i ty  



t 

where each is generally a function of the s p a t i a l  coordinate posi t ion 

and time. 

( c >  The Energy Equation 

The energy equation may be wr i t ten  f n  the  form 

where 9 is  the  dfssipatfon function (2,3) and 

f l u ,  

is  the  vector heat  

(d> 

The equation of s t a t e  of a f l u i d  i s  the functional re la t ionship  be- 

Equation of S ta t e  of F l d d  

tween its pressure, densi ty  and temperature (5-e. y i t s  state var iables)  

For a l iquid,  f t  is of ten  wri t ten as 

\ 

where Dc fs the bulk modulus of e l a s t i c i t y  of the l iqufd.  

The problem of sfmplffy%ng a set  of equatfons of change is some- 

times rather d i f f i c u l t  from the  standpoint t h a t  one needs t o  know some- 

thing about the  answer before the s ignff icance of various terms or 

variables  being sfmpllfled or  eliminated can be judged. 

neglect what seem t o  be minor terms and completeby eltminate the possi- 

b i l i t y  of mathematically predicting some physicab phenomena i n  the  

processo 

Often one can 

Previous s tud ie s  of t he  dynamics of  f l u i d s  i n  c o n d d t s  have shown 
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t he  following trends: 

I.* Thermal e f f e c t s  appear negl igible  f o r  l i qu ids  i n  many 

cases  but not f o r  gases,, 

Except for extremely high frequencies, t he  bulk vis- 

cos i ty  may be neglected! however, i t  may be necessary 

t o  account for time dependent shear viscosity effects 

(v iscoe las t ic  e f f ec t s )  . 
Nonlinear e f f e c t s  f o r  acoustic type disturbances i n  

l i q u l d s  appear small or  negligible,  

2, 

3 .  

With these t rends I n  mind, the  mathematical descr ipt ion w i l l  now 

be simplified t o  a somewhat more t r ac t ab le  form, keeping fn mind tha t ,  

pr incipal ly ,  l i q u i d s  are being dea l t  with i n  t h i s  study. The s t ipula-  

t i o n  of negl igfble  thermal e f f e c t s  fo r  a l i q u i d  eliminates the energy 

equation as one of the describing r e l a t ions ,  thus leaving the equation 

of motion, the  contfnu5ty equation and the state equation. 

it is assumed tha t  the  bulk v iscos i ty  is  zero and t h a t  the  sheaf and 

If fur ther ,  

d i l i t a t i o n a l  v i scos i t f e s  a re  s p a t i a l l y  independent, then the equation of 

motion becomes 

which is the  Navier-Stokes equation, 

nonl inearf t ies ;  however, i t  has been indicated t h a t  such e f f e c t s  are 

probably minor o r  negl igible  so the equatfons w i l l  now be l inear ized,  

Assume 

The equations of change eontafra 
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?=%+-PI 

e= eo + e, 
where sub-0 denotes steady-state or t,ne independent quant t i e s  (or at 

least slowly varying with respect  t o  sub-L quant i t ies )  and sub-1 denotes 

the  f i r s t -order  acoustic or disturbance quant i t ies .  

t i o n s  (1.4) i n t o  the continuity,  motion and state equations, the desired 

l inear ized  or  f i r s t -o rde r  equations of change (assuming no body force) 

become 

Introducing Equa- 

which ~231 be ca l led  the  f i r s t -order  Navier-Stokes equation, 

€or  the ff rs t -order  eont lnui ty  equation, and 

f o r  the  l i qu id  s t a t e  equatfon, 

Equations (X04>, (1.61, and (1.7) are the f i r s t -order  equations of 

change f o r  a compressible lfiquid (neglecting thermal e f f ec t s )  and will 

be the bas is  of discussion €or t h i s  t r ea t f se .  

Scope of Treatise 

The scope of t h i s  treatise on the dynamics of f l d d  transmission 

l i n e s  may be summmfzed as follows: 

lo Comprehensively examfne and review a l l  l i t e r a t u r e  
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pert inent  t o  the  dynamics of f l u i d  flow i n  closed 

conduit s . 
Obtajn an exact so lu t ion  of t he  f i r s t -order  equa- 

t i ons  of change t o  describe the dynamics of a v%scous, 

compressible l i qu id  i n  a closed conduit. 

Experimentally determine the  v a l i d i t y  of the exact 

solution. 

Develop a p rac t i ca l  and accurate approximate model of a 

f l u i d  transmission l i n e  which should be su i t ab le  f o r  

use by the pract ic ing engineer. 

2-  

3 .  

4, 

One of the object ives  of the writer i n  t h i s  work i s  t o  bridge some 

of the  gaps between the  a reas  of f l u i d  systems engineering and acoust ics  

which have recent ly  been growing more c lose ly  a l l i e d ,  primarily due to  

the rap id ly  developtng area  of f l u id i c s .  

Computer Program L i s t i n g s  

For the convenience of the reader, a l l  per t inent  computer programs 

used i n  performing the  ca lcu la t ions  f o r  t h i s  work have been l i s t e d  i n  

Appendix C a 



CHAPTER I1 

STATE OF THE ART 

Introduc t i o n  

Li te ra ture  re la ted  t o  the  subject  of t h i s  t r e a t i s e  c u t s  across  the  

boundaries of many fascinat ing discipl ines .  

transmission l i n e  theory, electromagnetic waveguides, acoustic wave- 

guides, loudspeaker theory and the wave mechanics of e l a s t i c  sol ids .  

To attempt a complete discussion of  material from a l l  of these areas 

would be completely beyond the scope of t h i s  work. However, some of 

the  more s ign i f i can t  r e s u l t s  which per ta in  t o  .the descr ipt ion of l i qu ids  

as the working medium w i l l  be discussed. 

These include e l e c t r i c a l  

Distributed Parameter Models 

I n  Chapter E, i t  w a s  s t a t ed  tha t  the exact descr ipt ion of a fllafd 

conduit involves the  simultaneous so lu t ion  of the  equations of change 

f o r  the  f lu id .  

upon so lu t ions  of some reduced form of Equations (1.5), (1.6)~ and 

(1.7) w t l l  now be given, 

Studies of some previous inves t iga tors  which a r e  based 

F r i c t ion le s s  Model 

The starting point fo r  s tud ies  of conduit dynamics 9s the one- 

dimensional wave equation which was f i r s t  derived by d'hlembert i n  about 

9 
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1750 i n  connection with h i s  s tud ie s  of vibrat ing strings. Joukowsky 

(4)  and A l l i e d  (5) are general ly  c red i ted  as first associat ing wave 

phenomena with water.hammer problems i n  order t h a t  s tud ies  of the wave 

equation could be used i n  explaining pressure t r ans i en t s  %n conduits, 

The wave equation f o r  a compressible l i qu id  is derivable from Equations 

.(1*5), ( ~ 6 ) ~  and (1.7) i f  one assumes t h a t  t he  viscous e f f e c t s  are  

negligible.  The result is 

where c 

a f lu id ,  by 

is the isentropic  speed of sound i n  the f l u i d  and is given, f o r  
0 

/Go = #  (2.2 1 

v represents  t he  f l u i d  disturbance ve loc i ty  i n  the  d i rec t ion  of propaga- 

t ion,  Solutions t o  Equation (2,1) predict  s inusoidal  pressure and 

veloci ty  disturbances propagating unattenuated with respect t o  space and 

time with a veloci ty  coo 

suddenly closed valve on one end of a l i n e  with a constant pressure 

reservoir  at the  other  end, Figure 2.la, then the disturbance pressure 

If Equation (2,l) i s  solved €or the case of a 

w i l l  be of the form 

where vo is the  i n i t i a l  mean veloci ty  i n  the  pipe before flow stoppage, 

Equation (2.3) is the mathematical expression f o r  a square wave with 

period ( ~ L / C ~ ) ~  see Figure 2.lb- 

events which r e s u l t  i n  t h i s  pressure square wave. 

Now examine the physical chain of 

A t  the  in s t an t  of 
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( a )  Conduit With Suddenly Closed Valve at One End, Reservoir 
Other End 

(b) Square Wave Pressure Variation a t  Suddenly Closed Valve 

P 

4 

t+, + -2 
z.10 Z = L  

( c )  Pressure History of Waves i n  Conduit for One-Half Period 

Ffgure 2,l. SuddenlyClosedValve -ClassicalWater Hammer Problem 
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valve closure,  t he  f l u i d  a t  z = L is ins t an t ly  stopped and the  k ine t i c  

energy of t he  f l d d  is converted instantaneously (no f r i c t i o n )  t o  poten- 

t i a l  energy (pressure). This pos i t ive  pressure wave propagates toward 

z = 0 with ve loc i ty  co and r e f l e c t s  back t o  z = L with zero pressure, 

see Figure 2 . 1 ~ .  The pressure wave then becomes negative and propagates 

again t o  z = 0 where i t  r e f l e c t s  wfth zero pressure back again t o  2; = L, 

thus completing one cycle of t he  pressure wave, 

It is evident from t h i s  discussion t h a t  the conduit of Figure 2.1 

A has a cha rac t e r i s t i c  PqnaturalB1 frequency of o s c i l l a t i o n  f c  = co/4L. 

c r i t i c a l  ana lys i s  of Equation (2.31, however, shows t h a t  t h i s  pa r t i cu la r  

disturbance ac tua l ly  cons is t s  of an i n f i n i t e  number of d i scre te  charac- 

t e r i s t i c  frequencies fc  = co(2n-1)/4L. In  general, one may say tha t  a 

conduit w i l l  have an i n f i n i t e  number of cha rac t e r i s t i c  frequencies, 

whose values depend not only upon c 

t ions  for the  conduit, 

time var iant  non-sinusoidal disturbance, the  system response Wzll be the  

sum of the response of each bharac te r i s t lc  frequency. 

which a given cha rac t e r i s t i c  frequency w i l l  be *texcitedgP depends on the 

and L, but a l so  upon the  end condi- 
0 

When one exc i tes  t h i s  system with some form of 

The extent t o  

type of disturbance, I n  general, the  qvsharperBq the disturbance, the  

grea te r  w i l l  be the extent  to  which the high frequency terms are ex- 

c i t ed ,  

ideal ized and Snclude nei ther  the e f f e c t s  of f r i c t i o n  o r  of pipe w a l l  

e l a s t i c i t y  ( these topics  w i l l  be discussed l a t e r  on). 

however, ind ica te  the  upper l i m i t  of amplitude f o r  a given disturbanceo 

Extensive treatments of t h e  appl icat ion of this simple theory t o  prac- 

t i ca l  problems may be found i n  references ( 6 ,  7, 8). 

It is important t o  r ea l i ze  tha t  the above results are very 

The results, 

These 



applications,  i n  general, involve a graphical or numerical so lu t ion  of 

the  wave equation. 

F r i c t ion  Effects  

When researchers (e.$. , 9) performed experiments on models demon- 

* strati% water hammer they found considerable discrepancy between the  

simple plane wave theory and ac tua l  resu l t s .  They found tha t  when 

sudden flow changes were effected,  the resu l t ing  pressure t r ans i en t s  

changed shape with time similar to  the diagram i n  Figure 2.2. 

Figure 2.2. Actual Pressure Versus Time Plot  f o r  Suddenly 
Closed Valve 

It may be seen tha t ,  i n  the  ac tua l  case9 the sharp corners of the 

pressure t r ace  are being 

with time, 

e f f e c t s  which are a consequence of viscosi ty ,  pipe w a l l  e f fec ts ,  ete, 

o f f v t  and the amplitude is decaying 

This phenomena results from dispers ive and d iss ipa t ive  
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I n  general, they r e s u l t  from f r i c t i o n  e f f ec t s ,  

note tha t  the  g rea t e s t  dispersion and d iss ipa t ion  occur on the high 

frequency terms which are those terms responsible f o r  the  sharp corners 

of the pressure t race ,  

e f f e c t s  would require  an exact so lu t ion  of the  governing equations. 

.However, past  researchers have obtained useful results by means of ap- 

proximate solutions,  

It is in t e re s t ing  t o  

To account fo r  a l l  dispersive and d iss ipa t ive  

Plane Wave Viscous Model 

It 

s a t i s f y  

v i scos i  

w a s  demonstrated by Stokes t h a t  plane or unbounded waves do not 

the simple one-dimensional wave equation, but ra ther ,  due t o  

y, must s a t i s f y  

Equation (2-4) may be obtained from Equations (l.T>, (1.619 and (1.7) by 

assuming one-dimensional e f f e c t s  only, 

be represented by 

Solutions t o  Equation (2,4) may 

where Y is  a complex constant ca l led  the  propagation constant or propa- 

gat ion f ac to r  and i s  gtven, i n  general  by 

*rz The quant i ty  Tr is the  s p a t i a l  a t tenuat ion fac tor  since the  term e 

represents  the  s p a t i a l  decay or at tenuat ion of the wavee %e quantity 



w/f 

t i o n  of the  disturbance, 

cO0 

is  ca l led  the phase veloci ty  and i s  the  ac tua l  ve loc i ty  of propaga- 
C 

I n  general, the phase ve loc i ty  does not, equal 

The value of T . f o r  the  so lu t ion  given i n  Equation (2.5) is 

w represents  the angular frequency of the disturbance. 

Solutions t o  Equation (2.4) have been obtained by some researchers  

i n  an e f f o r t  t o  account fo r  dispersion and d iss ipa t ion  e f f e c t s  i n  water 

hammer (10). 

cous e f f ec t  because Equation (2,4) accounts f o r  shear only i n  the  

These solut ions,  however, g rea t ly  underestimate the  vis- 

d i rec t ion  of propagation ( the  z di rec t ion) ,  

f e c t s  a r e  ac t ing  i n  the r a d i a l  d i rec t ion  due to the  f a c t  t ha t  the f l u i d  

veloci ty  must go to zero at the  pipe wall. One m u s t  conclude then tha t  

solut ions to  Equation (2.4) w i l l  not adequately describe the  viscous 

e f f e c t s  i n  conduit dynamics, 

Much g rea t e r  viscous ef- 

Linear Resistance Model 

The approach tha t  a g rea t  number of reseamhers  have used .is to 

modify Equation (1.5) by subs t i tu t ing  i n  place of the  v iscos i ty  depend- 

ent  terms a f r i c t i o n  term which is proportional t o  the  veloci ty  ( 6 ,  7, 

9,  11, 12, 13, 1.4, 1.51, The r e s a t i n g  equation of motion i s  

R1 is a res i s tance  or f r i c t i o n  coef f ic ien t  of ten  given by the  laminar 

flow res i s tance  value, o r  
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P being the  pipe radius.  

with the  cont inui ty  equation and the equation of state, the  same solu- 

t i o n  as i n  Equation (2.5) is  obtained, except Y now has the value 

When Equation (2.8) is  solved simultaneously 
0 

(2.10) 

If the  so lu t ion  t o  Equation (2.8) is obtained f o r  the case of a 

suddenly closed valve, the  pressure versus time p lo t  at the  valve Will 

look similar t o  Figure 2,3. 

Figure 2.3. Pressure f o r  Suddenly Closed Valve From . 
Linear F r i c t ion  ModeL 

Although t h i s  l i ne=  f r i c t i o n  model does not give the  exact answer, 

espec ia l ly  over a wide frequency range, it has good u t i l i t y  when 
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experimental values  of R1 may be determined and when t h e  frequency range 

is limited,  

Two-Dimensional Viscous Model-Longitudinal Mode Onlg :  

A model reported i n  the literature (16, 17) which more exact ly  

*describes the f i r s t -order  viscous effects f o r  the  longi tudinal  mode of 

vibrat ion only i s  a r e s u l t  of  the  so lu t ion  of the following reduced form 

of the  equation of motion 

The resultiw propagation f ac to r  is 

where 

(2.11) 

and where J,(Q0) and Jo(Q0) a req  respectively,  t he  first and zeroth 

order Bessel functions (18) of the argument Go. 

tained the  pressure h is tory  for t he  case of a suddenly closed valvg 

Brown (16) has ob- 

using the so lu t ion  t o  Equation (2.11). His r e s d t s  have much the same 

general shape as that  of the experimental r e s u l t s  of o ther  authors, but 

the  results are inconclusive s ince no supporting experimental r e s u l t s  

were included wlth the  theore t ica l  predictions. It can be concluded, 

however, t ha t  Equatfon (2.11) is a b e t t e r  representat ion of t he  t r u e  

physical s i t ua t ion  than the models previously discussed. From t h e  
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standpoint of frequency response cha rac t e r i s t i c s  as reported by 

Oldenberger and Goodson (12), th i s  theory follows very c lose ly  the ex- 

perimental resultsD .Brown (16) and two other  authors (19, 20) have 

solved Equation (2.11) f o r  a f l u i d  i n  which the heat  t r ans fe r  may not 

be neglected, thus i t  m u s t  be solved simultaneously with the  energy, 

,cont inui ty  and state equations. This results i n  a propagation fac tor  

where now 

and a0 is the Prandtl  number (2)  and T* is  the  r a t i o  of spec i f i c  hea ts  

f o r  the  f l u i d e  Thfs model has not been experimentally ver i f ied  by re- 

searchers s o  its v a l i d i t y  m u s t  be regarded, a t  t h i s  time, as 

undetermined- 

Fluid Transmission Line Concept 

So f a r ,  only the discussion o f  time domafn so lu t ions  of the  equa- 

t i ons  have been given. 

system i n  which several  components were involved, then t h e  time domain 

approach would be exceedingly d i f f i c u l t .  A useful and simple approach 

when dealing with the frequency analysis  of f l u i d  conduits (or  any 

f l u i d  component) is tha t  of the  f l u i d  transmission l i n e  (7? 12, 21). 

Consider the  f lu fd  l i n e  t o  be representable as shown .in Figure 2.4 as a 

four-terminal system. If one solves the system equations for a c o n d d t  

I f  one were to  begin t h e  exact study 09 a f l u i d  
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T? t *  

i n  the  Laplace transform domain, then a r a the r  simple set of equations 

r e l a t ing  the  four transformed var iab les  i s  obtained, thus 

b 

FLUID CONDUIT 

.@ ta 

and 

(2.16) 

I n  Equations (2,16) and (2017), V l ( s ) ,  V i ! ( s ) ,  Pl ( s> ,  and P,(s> represent 

the  Gaplace transform of the  respectfve time functions and s is the  

Laplace variable.  Also, 

L= x?-x,  (2.18) 

and 

S 

8, is ca l led  the cha rac t e r i s t i c  impedance of the  conduit. The Y which 

appears i n  Equations (2.161, (2.1'71, and (2,19) is iden t i ca l  with pre- 

vious y ' s  except t h a t  here fw = s, the Laplace variable,  The value of 
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Y, of course, depends upon the  model. 

form of the  t r ans fe r  equations i s  the  same f o r  a l l  of the previous 

models discussed, only the  value of Y varies .  

f o r  the  four-terminal representation of Figure 2.4 w i l l  change, i n  

It is  important t o  note t h a t  t h i s  

The t r ans fe r  equations 

general, when there  is  motion of the pipe w a l l  and when we include the 

*higher modes of propagation, Note a l so  tha t  the  f l u i d  ve loc i t i e s  repre- 

sented here a r e  average values; t h a t  is, they have been integrated over 

the cross-section; thus, they are only dependent on time and the axial 

coordinate. 

The u t i l i t y  of va l id  t r ans fe r  equa t ions in the  frequency analysis  of 

a conduit system cannot be over-emphasized. 

equations can be wri t ten f o r  each element of a f l u i d  system, then the  

t o t a l  system performance may be analyzed by combining the equations i n t o  

a new s e t  of t ransfer  equations which represent the e n t i r e  system, sup- 

pose, f o r  example, t ha t  two components of a f l u i d  system are arranged in 

series as shown i n  F igwe  2.5, 

I f  four-terminal t r ans fe r  

Figure 2.5* Ser ies  Arrangement of Two Fluid 
Components 



Suppose t h a t  the  t ransfer  equations f o r  element 1 may be expressed fn 

the  form 

(2.20) P,Cs) = A,cs) R(5) + B@) & : I S )  

and 

Writing these equations i n  matrix form gives 

In  a similar manner? one may write f o r  element 2, 

Subst i tut ion of Equation (2.22) i n t o  (2,231 y ie lds  

o r ,  by m a t r i x  mul t i p l i e  a t  ion, 

(2.24) 



22 

One might, for convenience, write 

.so t ha t ,  e f fec t ive ly ,  elements 1 and 2 have been combined i n t o  a new 

element 3. The new element may be represented as shown i n  FTgure 2,6, 

Ftgure 2.6. Combined Se r i e s  Elements 

Methods similar t o  t h i s  have been employed t o  g rea t  advantage i n  

the analysis  of noise transmission f n  complex f l u i d  system which in- 

volve series and p a r a l l e l  elements (22). 

terminal elements has been worked out  by Pepes (23) €or various types of 

The matrix theory f o r  f o w -  

arrangements of the  elements. 

I n  general, the  matrix method approach is idea l ly  su i ted  t o  fre- 

quency ana lys i s  s tud ies  of a conduit system. 

systems t o  be analyzed eas i ly  with a d i g i t a l  computer. 

It allows very complex 



Lumped Models 

Up t o  now, only d is t r ibu ted  parameter models of conduit systems 

have been discussed. Such models were found t o  be expressible i n  terms 

of t r ans fe r  r e l a t ions  which lend themselves w e l l  t o  frequency analysis.  

In general, these d is t r ibu ted  models a.re d i f f i c u l t  t o  deal  with i n  t h e  

time domain. 

problems such as problems involving conduit systems which contain valves 

closing or opening a r b i t r a r i l y  with time, 

may want only the  time response of the  system, 

uted parameter models, t h i s  means t h a t  the  t r ans fe r  r e l a t ions  for the 

system of i n t e r e s t  m u s t  be transformed from the  Laplace domain back 

i n t o  the  time domafn, or t ha t  some numerical or graphical  procedure must 

be used t o  solve the  system describing equationso The transformation of 

the  t ransfer  r e l a t ions  i s  very formidable; on the other hand, the 

graphical o r  numerical procedures a r e  r a the r  simple ways t o  analyze a 

system but lack the degree of genera l i ty  usually desrred 3.n system anal- 

ys i s ,  Due t o  these drawbacks i n  the  appl icat ion of the d is t r ibu ted  

parameter models, lumped parameter approximations are of ten used i n  

conduit system analysis.  

be kept i n  mind. "he major r e s t r i c t i o n  which must be imposed on the  

lumped model of a d is t r ibu ted  system is  t h a t  it is va l id  only at low 

frequency. The method has been found t o  be val id ,  I n  most fnstanees, 

only i f  the frequencies involved are not grea te r  than about one-eighth 

of the f i r s t  c r i t i c a l  frequency of t h e  lumped elemento 

t h i s  r e s t r f c t i o n  would be a system which has suf f ic ren t  damping so t h a t  

compressibil i ty may be neglected, Now, examine some typica l  ways in 

This is a major handicap f o r  many technical ly  in t e re s t ing  

I n  cases such as t h i s ,  one 

I n  terms of the d i s t r ib -  

These models also have drawbacks which must 

The exception t o  
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which conduit systems a r e  lumped; f i r s t ,  consider the basic lumped ele- 

ments, fee . ,  inertance,  capacitance and res i s tance  (7 ,  21, 24). 

Fluid Inertance 

Consider the f l u i d  l i n e  shown i n  Figure 2.7- Assume that only the 

.pressure and i n e r t i a  forces  a r e  important and tha t  compressibil i ty may 

be neglected. 

Figure 2.7. Lumped Model Inertance Element 

Writing the equation of motion f o r  t h i s  case gives  

e--%= d v  = I”-&- d u  (2.27) 

where vl = v2 = v s ince the flow is incompressible. 

represents  a f l u i d  iner tanceo Before proceeding, i t  should be noted 

tha t  Equation (2.27) is often found i n  var ious other  forms i n  the  l i t e r -  

ature.  

The quant i ty  POL 

It may be found a l s o  as 

where q i s  the  flow r a t e  and A is the  cross-sectional area.  For t h i s  



case, the  f l u i d  iner tance is poL/A. Another form of Equation (2.27) i s  

where w is  the  weight flow rate. 

the same i n  each caseo 

Notice t h a t  the inertance,  I, is not 

Notice a l so  t h a t  these equations a r e  va l id  only 

f o r  constant area l i n e s ,  

Fluid Capacitance 

Now consider a f l u i d  l i n e  i n  which only compressibil i ty e f f e c t s  are 

important, i .e.,  i n e r t i a  o r  inertance e f f e c t s  and res i s tance  e f f ec t s  are 

unimportant. 

s t a t e  equations, one has, since p1 = p2 = ps 

With respect t o  Figure 2.8, applying the continufty and 

Figure 2,8. Lumped Model Capacitance 
Element 

Again, as w a s  t r ue  f o r  Equation (2,27), one could j u s t  as well have 

m i t t e n  Equation (2.28) i n  terms of q o r  ws but the value of C would 

a l so  have been d i f f e ren t ;  thus, 
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and also 

Fluid Resistance 

Because of the l a rge  number of parameters which may affect the 

f l u i d  resis tance,  i t  becomes more d i f f i c u l t  i n  t h i s  case t o  write a 

va l id  theore t ica l  re la t ionship  which holds f o r  a wide range of  flow and 

pressure varfations.  The usual approach, therefore ,  is t o  treat f l u i d  

resis tance semi-empirically by defining the pressure drop due t o  re- 

s i s tance  between points  1 and 2 of a lumped r e s i s t i v e  element as where 

Figure 2,9, Lumped Model Resis t ive 
Element 

VI = v2 = v and R(v) is an experkmentally determined function of veloc- 

i t y .  

well known from information contained i n  standard f l u i d  mechanics 

textbookso 

O f  course) if the pressure and veloci ty  a r e  steady, then R(v) fs 

For the case of o sc i l l a t ing  flow only  (no net  flow), one can 
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get a good value f o r  the  res i s tance  coef f ic ien t  by considering a low 

frequency approximation of the  two-dimensional viscous d is t r ibu ted  

parameter modelo i ~& 

Fundamental Lumped Model 

Combining the  three  basic elements y ie lds  the  fundamental represen- 

t a t i o n  of a lumped l i n e ,  Combining Equatfons (2.27) and (2.28) and 

Figure 2.10, Fundamental Representation of 
Lumped Lfne 

considering also Equation ( 2 0 2 9 ) ~  then one may write f o r  the fundamental 

representation 
\ 

and 

Now, take the Laplace transformatfon of Equations (2,301 and (203x1, 

thus 



and 

Writing these last two equations i n  the  standard t ransfer  form gives, 

There a r e  many possible ways of representing a conduit with lumped 

elements other than the representat ion of Figure 2.10, 

Equivalent E lec t r i ca l  C i rcu i t s  

One motivation f o r  w i n g  lumped models, other  than s implici ty ,  9s 

t ha t  they readi ly  y ie ld  t o  simulation on an analog computer, 

pressure-voltage analogy, the e l e c t r i c a l  equivalent of the fundamental 

lumped model becomes tha t  shown i n  Figure 2.11* The v d u e s  of Re,  Le, 

and Ce depend upon what is made to  be the  analog of e l e c t r i c a l  currento 

Table I shows the analogous quant i t ies  f o r  three possible analogs. 

Other c i r c u i t s  which a r e  of ten  used i n  an e f f o r t  t o  improve the 

accuracy of representat ion are shown i n  Figure 2.12, 

Using a 



Figure 2.11. E lec t r i ca l  Analogy for 
Fundamental Lumped 
Conduit With F r i c t ion  

C e / 2 = =  

TABLE I . 

ELECTRICAL ANALOGS 

= = C e / 2  == Ce 

Elee t r i c a l  
Quantity 

A n a l ~ g ~ ~ s  

Conduit 
System 

Quantity 

Vox tage Current 7 Resistance 
R e  

Inductance 
Le 

Capacitance 4 

Figure 2,12. Variations of E l e c t r i c a l  Analogs 



Method f o r  Improving Lumped Model 

It w a s  s t a t ed  previously t h a t  a lumped model general ly  is va l id  

only  i f  the frequencies involved a re  not greater than about one-eighth 

of the first cr i t i ca l  frequency of t he  lumped element. 

This r e s t r i c t i o n  can be eliminated by using several "lumps" to 

simulate a conduit. Suppose, for example, t h a t  the highest  frequency 

encountered is about ten  times too high f o r  va l id  lumping; then, If t en  

e l e c t r i c a l l y  equivalent c i r c u i t s  are used i n  series ( a f t e r  reducing Re ,  

Le, and C e  by a f ac to r  of ten) ,  one is able  t o  circumvent the or ig indl  

r e s t r i c t i o n ,  

lumped model. 

Figure 2*l3 shows the e l e c t r i c a l  analog f o r  an n-segmented 

Figure 2 .I3 Analog for n-Segemented Lumped Conduit With F r i c t ion  

I n  pract ice ,  i t  has been found tha t  t h i s  model does lead t o  g rea t e r  

accuracy, but t ha t  the number of segments required becomes very g rea t  

when the  frequencies involved go beyond about the  second c r i t i c a l  value. 

Another method of lumping, invented t o  overcome t h i s  d i f f i cu l ty ,  is 

discussed below ., 



Tapered Models 

The representation of lossless fluid lines by a tapered lumped 

The analog of an model is the subject of a patent by Paynter (25). 

n-segmented tapered representation as presented in the patent is shown 

in Figure 2.14. The values of the Y's and @Is is dependent on the value 

of n and are given in Table I1 for values of n up to 5. 

Figure 2.14. Tapered Lossless Analog 

TABLE I1 

VALUES OF AND Igs 

.367 I .218 

E 
.152 

.154 

.I59 

.I68 

.182 

.209 

. 257  

.394 

I 5  

. 0 6 1  

.122 

.124 

.127 

.131 

.137 

.146 

,160 

.185 

.229 



32 

It has been found t h a t  t h i s  tapered representat ion gives  good re- 

sults f o r  any number of c r i t i ca l  frequencies and the  number of *'lumps" 

or segments needed f o r  an accurate representat ion up t o  a given fre- 

quency is equal t o  

Nc + I 

where Nc is the number of c r i t i c a l  frequencies below the  desired cutoff 

frequency. 

Conduit Wall Effec ts  

Thus far i n  the  developments, the e f f e c t s  which the  conduit w a l l  

may have upon t h e  f l u i d  dynamics have been neglected. Depending upon 

the operating parameters of the  system befng analyzed, accounting f o r  

the e f f e c t s  of the w a l l  may be very simply achieved or,  on the  other  

hand,, may require  an extensive mathematic treatment i n  order t o  ge t  

reasonable answerss 

be handled with the  simple treatment. 

analysis  usually occur only when dealing with extremely high operatfng 

frequencies, 

Fortunately,, most problems which are of concern can 

Problems demanding a complex 

Simplified Analysis 

Korteweg i n  1878 showed t h a t  wave propagation w a s  dependent upon 

both the  e l a s t i c i t y  of t he  f l u i d  and of the conduit w a l l  and t h a t  t he  

r e su l t an t  propagation ve loc i ty  must be equal t o  or less  than coo It 

has been shown (see, f o r  example, Reference 7) t h a t  the actual sound 

veloci ty  is 
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where E is Young's modulus f o r  the tube material  and f is given by t 

tMn-walled tube 

f =  
[ 2(G-D?  D,"+ ") thick-walled tube 

I n  Equation (2.35), Do represents  the conduit outside diameter and DE 

represents  the  ins ide  diameter. 

ana lys i s  is t h a t  one replace co with t h e  c of Equation (2,341 i n  the 

A11 t h a t  is required i n  the s implif ied 

analysis  0 

More &act Analysis 

There have been a la rge  number of papers wri t ten pertaining t o  the 

e f f ec t  of conduit w a l l  e l a s t i c i t y  on the transmission cha rac t e r i s t i c s  

of f l u i d  within the  conduito Basically? conduits may be divided i n t o  

two types with regard t o  the e l a s t i c  cha rac t e r i s t i c s  of t h e i r  walls; 

e l a s t i c  f l e x i b l e  and e l a s t i c  s t i f f .  For a conduit with e l a s t i c  f l ex ib l e  

w a l l s ,  i t  i s  assumed tha t  pressure var ia t ions  within the conduit can 

cause r a d i a l  deformations which do not cause corresponding axial dis- 

turbances i n  the  conduit w a l l ,  i.e., a l l  disturbances i n  the  w a l l  are 

local ized and cannot propagate a x i a l l y  along the  conduit w a l l .  

e l a s t i c  s t i f f  walls, on the  o ther  hand, disturbances can propagate 

a x i a l l y  along the pipe wall. 

butions on the e f f e c t s  of conduit e l a s t i c i t y  are Lamb (261, Jacobi (271, 

Morgan (281, Lin and Morgan (291, and Skalak ( 3 0 ) .  

authors have t rea ted  exact ly  a viscous f l u i d  i n  t h i s  connectiono 

For 

Some of the  authors who have made contr i -  

None of these 

An 
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exact treatment of both f l e x i b l e  and s t i f f  walls f o r  a viscous f l u i d  is 

outlined i n  Chapter V I I ,  

I n  general ,  the r e l a t ions  expressing the propagation veloci ty  

va r i a t ion  with frequency have t rends as shown sketched i n  Figure 2.15. 

Notice tha t  only one mode t ransmits  f o r  a l l  frequencies f o r  the case of 

an e l a s t i c  f l e x i b l e  w a l l ,  whereas two modes transmit at all  frequencies 

f o r  an e l a s t i c  s t i f f  w a l l .  

frequency i n  both cases  approaches the  game value, c/c,, 

same value as predicted by the simplified ana lys i s  from Equation (2.54). 

One Can see then tha t  the s implif ied ana lys i s  is exact f o r  low frequen- 

c i e s  f o r  the zeroth mode (nonviscous f l u i d  only),  

Note a l so  tha t  the l imi t ing  value f o r  s m a l l  

This is the 
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CHAPTEEi I11 

EXACT SOLUTION OF FIRST-ORDER NAVIER-SIIOK-ES EQUATIONS 

Introduction 

I n  t h i s  chapter, a solut ion of the f i r s t -order  Navier-Stokes equa- 

t ions,  as developed i n  Chapter 11, i s  given f o r  a cy l indr ica l ,  axi- 

symmetric coordinate system. This solut ion w i l l  be the mathematical 

foundation f o r  the remainder of t h i s  t r e a t i s e .  

Mathematfcal Formulation of the Problem 

For t h e  purposes of t h i s  discussion, consider a f l u i d  conduit t o  be 

describable i n  terms of a cy l indr ica l  Coordinate system as shown i n  

Figure 3.1. 

i 

Figure 3.1. Coordinate System 
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Assuming tha t  thermal e f f e c t s  are not important, the  f i r s t -order  equa- 

t ions  of change f o r  a l iqufd  are 

which is the  f i rs t -order  Navier-Stokes equation, 

fo r  the  f i r s t -order  cont inui ty  equatfon, and 

which is a l i q u i d  equation of s t a t e .  

(3.3) gives 

Combining Equations (3.2) and 

where co = 1% is the  isentropic  speed of sound for the  f l u i d  under 

consideration. 

change i n  terms of the f i r s t -order  var iab les  

ca l led  from Chapter I t h a t  ?I and p1 represent small perturbations from 

the  zero-order conditions Go and go. 

t i ons  are:‘ 

The Equations (3.1) and (3.4) a r e  the equations of 

and p1. It may be re- 

The r e s t r i c t i o n s  on these equa- 

- 
1. “he f l u i d  ve loc i ty  (7 = vo + 71) at any point and time is  

much less  than the veloci ty  of sound i n  the  f l u i d ,  thus 

jus t i fy ing  omission of the nonlinear terms, 

Perturbations i n  the densi ty  a r e  negl igible  compared t o  

the  average density; t ha t  is, 

2. 

l<<po e 



3* Temperature e f f e c t s  a r e  negligible.  

4. 

5. 

Fluid v iscos i ty  is s p a t i a l l y  fndependent a 

The flow f i e l d  i s  axi-symmetric. 

Solution 

To f a c i l i t a t e  the solut ion of Equations (3.1) and (3.41, deffne a 

sca la r  po ten t ia l  CP and a vector po ten t ia l  such tha t  

e= vqt axy. (3.5) 

This means i t  is being postulated t h a t  the  vector veloci ty  is composed 

of the gradient of the sca l a r  po ten t ia l  CP plus  the  c u r l  of the vector 

po ten t ia l  Takfng the divergence of (3.5) gives  

(3.6) 

and a l so  taking the c u r l  of ( 3 . 5 )  yie lds  

The v o r t i c i t y  vector associated with the perturbation ve loc i ty  may 

be wri t ten as 

and tha t  7 and T axe r e l a t ed  by 

F= v(.*T) - O'R (3.9) 

For axi-symmetric flow, 5 has only a component i n  the  d i rec t ion  perpen- 

d icu lar  t o ) r  andk 

It is necessary t h a t  

thus i n  the  0 directfon,  by v i r tue  of Equation (3.8). 

have only a @ component also, as may be seen from 



39 

the  re la t ionship  between and given i n  Equation (3.9)- Therefore, 

y= ow. (3.10) 

Since the o p e r a t o r v  has only)r  and k components f o r  axi-symmetric 

conditions, v e  uf = 0, whfch leads t o  

I n  summary, then, the divergence of the perturbation ve loc i ty  vector i s  

re l a t ed  t o  the sca l a r  f i e l d  CP by Equation (3.6); f o r  axi-symmetric flow, 

the c u r l  of the perturbation veloci ty  vector, a l so  re fer red  t o  as the  

vo r t i c i ty ,  is  re la ted  t o  the vector f i e l d  by Equation (3.11). 

Taking the divergence of Equation (3.11, the v o r t i c l t y  is elimi- 

nated s ince the divergence of a cur l  is zero, and thus 

Subst i tut ion of (3.6) i n t o  (3.12) y ie lds  

or 

From Equations (3.4) and (3.6) 

ap 2 =-  g L o 2  02q at 

Taking the  p a r t i a l  der ivat ive of (30x3) with respect to  t and 
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subs t i tu t ing  aP1/i3t from (3.14) gives  

Taking the c u r l  of Equation (3.21, the  r e s u l t  is 

or 

BY v i r tue  of the vector i d e n t i t y  

Vx(v&) = 0lo.v;)- v2G 

and the f a c t  t h a t  6 and 

(3.17) reduce t o  

have only 0 components, Equations (3.16) and 

- a 3  - = zrv2P a t  (3.18) 

and 

Physically., Equation (3,lS) is a viscous wave equation for plane o r  

one-dimensional waves; thus, CP fs a viscous plane-wave poten t ia l  func- 

t ion.  

diffusion equation for the  function It. 

VI = V O  + v x  3; the  two coupled p a r t i a l  d i f f e r e n t i a l  equations, (3.1) and 

Equation (3.18) is a v o r t i c i t y  diffusion equation and (3.19) 5s  a 

By means of the subs t i tu t ion  
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(3.41, which appear t o  be d i f f i c u l t  t o  solve i n  or ig ina l  form have been 

transformed i n t o  two independent p a r t i a l  d i f f e r e n t i a l  equations (3.15) 

and (3.19) of known splvable form, 

be solved. 

convenience. 

Equations (3.15) and (3.19) w i l l  now 

The so lu t ions  will be obtained i n  the Lapl.ace domain f o r  

. 
y ie lds  (assuming i n i t i a l  conditions zero) 

Applying the  Laplace transformation t o  Equatfons (3.15) and (3.19) 

and 

A A 
where CP and Y a r e  the transformed quant i t ies .  

Solving Equations (3.20) and (3.22) by the  method of  separat ion of 

var iab les  y ie lds  

and 

where A and B are constants  of in tegra t ion  and Y i s  the separation con- 

s tan t .  

t ions  of the f i r s t  kind with arguments f3r and kr ,  respectively.  

the equations 

Jo(fk> and J,(kr) denote the zero and f i r s t -order  Bessel func- 

Also, 
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(3.25) 

relate the parameters, k, Y, andg 

t i o n  constant Y m u s t  - be the  same i n  Equation (3.22) and (3.23) s ince Y 

and CP must both contr ibute  t o  the  perturbation veloci ty .  

and Y a r e  known, 

It should be noted tha t  the  separa- 

Now t ha t  CP 

can be found s ince 

where is the Laplace transform of T I .  Since 

and 

equation (3.26) becomes 

The Laplace transformed veloci ty  components may now be wri t ten as 

and 

(3.26) 

(3.28) 
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From the equal i ty  of the Y's i n  Equations (3.24) and (3.25) 

It now remains t o  ca lcu la te  the transformed pressure, thus from 

Equations (3.41, (3.61, and (3.23) 

o r  

Equations (3.30), (3031), and (3.33) are the exact general  simultaneous 

solut ion of the  f i r s t -order  axi-symmetric Navier-Stokes Equation (3.1) 

the  continufty r e l a t ion  (3.21, and the  equation of state f o r  a l i qu id  

given by (3.3). 

t e r s  (eigenvalues) Y, p, and k a r e  t o  be determined from the boundary 

conditions f o r  a par t icu lar  geometry. For a general case; t h a t i s ,  f o r  a 

general  s e t  of boundary conditions, the transformed ve loc i t i e s  and pres- 

sure  w i l l  become 

The constants of integrat ion,  A and B and the  parame- 

and 
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n 

I n  the chapters 'which follow, boundary conditions w i l l  be applied 

t o  t h i s  so lu t ion  f o r  the  case of a r i g i d  cy l indr ica l  pipe and a cylfn- 

d r i c a l  pipe with both e las t ic - f lex ib le  walls and e l a s t i c - s t i f f  w a l l s .  

The s ignif icance of each family of eigenvalues which r e s u l t  from the  

appl icat ion of the boundary conditions will be discussed. Also, en&- 

neering models w i l l  be developed which describe average ve loc i ty  and 

pressure conditions i n  a f l u i d  conduit, thus, simplifying the mathe- 

matics. 

the mathematical models. 

ESrperimental s tud ie s  will be described which attempt t o  ver i fy  
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APPLICATION OF THE EXACT SOLUTION TO THE CASE 

OF A R I G I D  FLUID CONDUIT 

Introduction 

The purpose of t h i s  chapter i s  to  present a r a the r  complete treat- 

ment of the appl ica t ion  of the  exact so lu t ion  of Chapter I11 t o  the  case 

of a r i g i d  f l u i d  conduit. 

respect  t o  wave propagation i n  a viscous l i qu id  w i l l  be demonstrated, 

complete discussion of these modes is l e f t  f o r  Chapter V I .  The major 

pa r t  of t h i s  chapter w i l l  be devoted t o  various aspects  of the zeroth 

mode of propagation, such as the  development of approximate forms f o r  

the zeroth mode cha rac t e r i s t i c  parameters (eigenvalues), a development 

of the zeroth mode t r ans fe r  equations and discussions of frequency and 

The existence of higher order modes with 

A 

t rans ien t  responses. It w i l l  be seen t h a t  the approximate value ob- 

ta ined f o r  the zeroth mode propagation operator corresponds t o  the 

values obtained by previous inves t iga tors  through the so lu t ion  of a 

reduced s e t  of equations of motion. 

ta ined a r e  i d e n t i c a l  i n  form t o  those previously reported. 

Also, the  t r ans fe r  equations ob- 

Character is t ic  Equations f o r  Eigenvalues 

I n  Chapter 111, the general  so lu t ion  t o  the f i r s t -o rde r  Navier- 

Stokes equation f o r  a compressible l i qu id  w a s  found and expressed i n  the 

45 
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Laplace domain form of Equations (3.341, (3.351, and (3.36) f o r  

respectively,  the r a d i a l  veloci ty ,  the  axial velocity,  and the pressure. 

In  order t ha t  the so lu t ion  can be complete f o r  the case under considera- 

t ion,  the proper boundary conditions must be applied, The eigenvalues 

kn9 Tn9 andf 

and pressure is specif ied at the  w a l l ;  f o e o q  i f  the impedance at the  

w a l l  is specified.  The constants of in tegra t ion  An and Bn m u s t  be found 

from an end condition f o r  the conduit, This means that the f l u i d  veloc- 

i t y  at the conduit end must be expanded as a s e r i e s  of the  eigenflmc- 

w i l l  be specif ied i f  the re la t ionship  between ve loc i ty  

t ions  and the  coe f f i c i en t s  determined. 

For the case of r i g i d  conduft walls, it is required tha t  both the 

r a d i a l  and axial f l u i d  ve loc i t i e s  go t o  zero at the pipe wall, r = roo 

Applying these conditions t o  Equations (3.34) and (3.35) y ie lds  

and 

Elimination of An and En by combining Equations (4.1) and (4,2) gives 

which is the  cha rac t e r i s t i c  equation f o r  the eigenvalues. 

neow so lu t ion  of Equations (3.32) and (4.3) will yie ld  the  eigenvalues* 

The exact computation of these values can only be achieved by a numeri- 

c a l  i t e r a t i o n  procedure. A computer program has been set  up t o  do t h i s  

and the  procedure and program are de ta i led  i n  Appendix A. 

The simulta- 

I n  general, 
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i t  must be s a i d  tha t  the exact evaluation of t h e  eigenvalues is not 

amenable t o  hand calculat ions,  Fortunately, i t  is easy t o  obtain 

r a the r  good approximate values f o r  the n = 0 or  "zerothf'mode eigen- 

values, This w i l l  be discussed i n  t h e  next section. 

I n  summary, f t  has been found t h a t  appl icat ion of the boundary 

.conditions at the  conduit w a l l  r e s u l t s  i n  a cha rac t e r i s t i c  equation 

which may be solved f o r  the allowed values of the parameters 

and kn. 

Each s e t  of numbers corresponds t o  a mode of propagation, 

Bnv Yn' 

I n  general ,  there w i l l  be an i n f i n i t e  number of allowed values, 

The summation 

of a11 of these modes, weighted properly by the constants of in tegra t ion  

An and Bn, give the f l u i d  veloci ty  and pressure at any point i n  the  

f l u i d  condv_it, The constants An and Bn m u s t  be evaluated i n  terms of 

end conditions; that  is, i t  is necessary t h a t  one know the  r dependence 

of the ve loc i ty  at some a x i a l  posi t ion zoo 

s t a n t s  will be discussed i n  more d e t a i l  i n  Chapter V I .  

The evaluation of these con- 

The s ignif icance 

of the  modes w i l l  also be discussed more f u l l y  a t  tha t  time. 

Approximate Form of Zeroth Mode Equations 

The d i f f i c u l t i e s  i n  exact ly  solving f o r  the eigenvalues from the 

cha rac t e r i s t i c  equation w a s  indicated i n  the  previous sect ion,  If it  

were not f o r  two f ac t s ,  the appl icat ion of the exact solut ion t o  every- 

day engineering problems would appear d i f f i c u l t  indeed. However: 

1, For most engineering problems, the influence of the 

zeroth mode is predominant, 

2. It is possible t o  ge t  good approximate values for 

the  zeroth mode eigenvalues. 

With these two f a c t s  i n  mind, the approximate form of the zeroth mode 
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equations w i l l  be obtainedo 

of the zeroth mode propagation operator corresponds t o  t h a t  reported by 

several  previous invest igators .  

It w i l l  be seen tha t  t he  approximate form 

It may be assumed t h a t ,  t o  a f i r s t  approximation, the zeroth mode 

value f o r  

may be approximated by t h e i r  small argument values 

r is very small or small enough t h a t  Jo(&ro> and J, (foro) 
P o  0 

and 

The v a l i d i t y  of t h i s  assumption may be judged on the  bas i s  of the 

comparison between exact values for Y r 

which w i l l  be presented later i n  t h i s  sect ion,  

and the approximate value 
0 0  

Subs t i tu t ion  of Equations (4,4) and (4.5) i n t o  (4,3) g ives  

or,  by subs t i t u t ing  Equation (4.6) i n t o  (3.32) y ie lds  

i o  = 

To complete the  approximation, s ince por0is small, koS i f z f o r  

Is1 (( co/vo This yields ,  subject  t o  the  l imi t a t ions  

(4.4) 

and 



a 

49 

t h a t  

13 k, = 2r (408) 

and 

where Yo is given by Equation (4.7). 

To evaluate the  accuracy of t h i s  approximation, rr and ' / c 0  have 

been obtained by both the exact procedure of Appendix A and with the  a id  

of Equations (4.7) and (4.8) f o r  the zeroth mode, The r e s u l t s  are shown 

plot ted i n  Figures 4.1 and 4,2. Note tha t  

r f Real pa r t  of Y r o  r 

r e ImagirLary pa r t  of Y r o  

n r  = Normalized phase veloci ty  = - 
c 

F 
c/e r c 0 

or 
c 
0 F Radial frequency number = - 

0 
n r  

V 

0 0  
D Radial damping number = -. r c  n r  

Notice t h a t  the e r ro r  f o r  rr is much grea te r  than the  corresponding 

e r ro r  f o r  /co. With the  a id  of these two f igures ,  a judgment can be 

made as t o  the  v a l i d i t y  of the approximate r0 based upon the  use 

intended, Suppose t h a t  i t  is desired t o  have an e r r o r  i n  To no grea te r  

than one per cent and the value of the  radial damping number happens t o  

c 
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be *001. 

r a d i a l  frequency number can be about 1.0. 

the approximate value of To should suf f ice ,  

From Figures (4.1) and (4.2), it may be seen tha t  the maximum 

For most engineering problems, 

It should be recognized tha t  the approximate value of To j u s t  

derived i s  almost i den t i ca l  t o  tha t  given by Equation (2.19) as reported 

by several  previous invest igators .  

propagation operator given by these previous invest igators ,  and which i s  

recognized as being f o r  the zeroth mode only, i s  r e a l l y  an  approximation 

t o  the  exact value of Yo" 

The implication here is  tha t  the  

Now t h a t  the approximate forms of the  eigenvalues have been demon- 

s t r a t ed ,  they will be applied t o  the  ax ia l  ve loc i ty  and pressure i n  or- 

der t o  obtain the corresponding approximate forms. 

The zeroth mode transformed f i r s t -order  axial veloci ty  and pressure 

may be wri t ten from Equations (3.351, (3.361, and (4,2) as (omitting the 

sub 1 f o r  convenience) 

and 

Applying the approximation of Equation (4.5) t o  (4.10) y5elds 

and s imi la r ly  f o r  Equation (4 e 11 

. / 
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Considering the response of the zeroth mode veloci ty  t o  a sinusoi- 

da l  pressure gradient then i t  is found t h a t  the time domain ve loc i ty  may 

be expressed as 

where the pressure gradient is 

This same r e s u l t  has been reported by Sex1 and Uchida as a r e s u l t  of 

solving a reduced form of the equations of motion. See reference (2) 

for a review of these r e s u l t s ,  

For values of the parameter %fi<5* The veloci ty  p ro f i l e  5s 

essen t i a l ly  parabolic while for values grea te r  than 5 the p ro f i l e s  begin 

t o  look l i k e  those shown i n  Figure 4,3. Notice t h a t  t he  f l u i d  near the 

edges of the  pipe responds more quickly than the  f l u i d  i n  the center of 

the pipe. This phenomena is ca l led  PoRfehardsonqs annular e f f ec t t8  and 5s 

discussed, f o r  example, i n  Schlichting (2) 

T IT 37J 
WtO uto+ 7 w to +? ut*+ T uto +-TI- - ut 

Figure 4.3. Typical Zeroth-Mode Velocity P ro f i l e s  due t o  a 
Sinusoidal Axial Pressure Gradient 
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It has been shown tha t  the exact so lu t ion  as derived i n  Chapter 

111, when applied t o  the  zeroth mode, can be reduced by usfng small 

argument values f o r  J ( r ) and J1( r t o  give the propagation oper- 

a t o r  derived by F. T. Brown, N. B. Nichols, and others. The r e s u l t s  of 

these authors w a s  reported i n  Chapter 11. 

.form for  the zeroth mode ve loc i ty  p r o f i l e s  w a s  seen t o  be iden t i ca l  t o  

the work of Sexl arzd Uchida, The results of Brown, Nichols, Sexl, and 

Uchida was obtained from the so lu t ion  of a reduced form of the equations 

of motion. 

authors i s  an approximation of the exact solut ion presented herein. 

accuracy of the approximation may be p a r t i a l l y  judged on the bas i s  of 

Figures 4,1 and 4.2, 

0 k 0 0  Po 0 

The corresponding approximate 

The conclusion i s  tha t  the work of the above mentloned 

The 

I n  t h i s  section, concern has been given only t o  the  discussion of 

the  zeroth mode of propagation, o r g  a l so  ca l l ed  t h e  fundamental o r  

longi tudinal  mode, 

calculat ions involved i n  working w5th the  higher modes is very cumber- 

some, as maybeseen i n  Chapter VI .  

applications,  the e f f e c t s  of these hlgher modes appear t o  be negligible.  

A concept useful when performing engineerfng calculat ions involv9ng 

What about the e f f e c t s  of t he  higher modes? The 

Fortunately, f o r  most engineers% 

the  zeroth mode w i l l  now be discussed, 

’ Derivation of Zeroth Mode Transfer Equations 

It is desirable ,  from an engineering point of view, t o  derive from 

Equations (4.32) and (4.13) a set  of t r ans fe r  equations which ~3.11 

describe t h e  average conditions at some point z along the conduit lLn 

terms of t h e  average conditions at z = zoo 
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I n  the  previous sect ion,  i t  was found that the  zeroth mode axial 

ve loc i ty  and pressure can be expressed approximately as 

and 

di5 
BOP- . (4.13) 

Since only the zeroth mode i s  being discussed at th i s  time, f o r  the rest 

of t h i s  chapter gBOtQ subscr ipts  which r e f e r  t o  the zeroth mode W e l l  be 

omitted. 

gives  ( the  bar notat ion ind ica tes  the quant i ty  has been averaged over 

the cross-section by in tegra t ion  from r = 0 t o  r = ro> 

Averaging Equation (4.12) across  the conduit cross-section 

and 

(4.14) 

Up t o  t h i s  point Y has been considered, for convenience, t o  have 

only pos i t ive  values; but, i n  general, it w i l l  have both a pos i t ive  and 

a negative value. Pos i t ive  values of Y ind ica te  waves progressing i n  

the negative z di rec t ion  and negative Y * S  ind ica te  waves t ravel ing i n  

the pos i t ive  z direct ion,  

elude pos i t ive  and negative values for Y f ie lds  

R e w r i t i n g  Equations (4,141 and (4,151 t o  tn- 
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and 

I n  Figure 4-4 is shown a diagram of a f lu id  conduit with appropriate 

end conditions. It may be seen tha t  t he  boundary conditions which it i s  

'I- 2=0 

Figure 4040 D i a g r a m  of Fluid Conduit f o r  
Zeroth Mode Transfer 
Equations 

necessary t o  s a t i s f y  are 

and 

Substitut2on of these boundary conditions i n t o  Equations (4.16) and 

(4.17) gives a p a i r  of equations from which B.1 and B, may be found, 

Subst i tut ing these values back i n t o  Equations (4,16) and (4.17) y ie lds  

the familiar form of the  t r ans fe r  r e l a t ions  
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and 

where 

Equations (4,181 and (4.19) a r e  then the zeroth mode t ransfer  equations 

r e l a t ing  the  average transformed conditions a t  some a r b i t r a r y  z t o  t h e  

average transformed conditions at z = 0, One may rewrit,e these rela- 

t ions  i n  another convenient and famil iar  form r e l a t i n g  the  conditions 

a t  some other  posi t ion 2,  where 2 i s  oriented a +L distance from 1 i n  

the z direct ion,  See Figure 4.5. 

I +L- 
21. t\ 

Figure 4.5, Diagram of Fluid Condult With Averaged 
Quantit ies a t  Each End 

“his form is 

and 



(4.22) 

The quant i ty  I' appearing i n  Equations (4.21) and (4.22) is  re l a t ed  

t o  Y by 

and is often ca l led  the propagation operator. 

noted tha t  Y, the  propagation constant, cons is t s  of a r e a l  part and an 

imaginary part,, o r  

I n  Chapter 11, i t  w a s  

merefore ,  

Figure 4.6 shows the var ia t ion  of rr, the s p a t i a l  attenuation, with 

ax ia l  frequency number ((#L/co) f o r  various values of t he  axial damping 

number (vL/c0ro ). Figure 4.7 shows the  var ia t ion  of dimensionless phase 

veloci ty  (c/c,) with a x i a l  frequency number. 

Notice that  when working d t h  a s ingle  f l u i d  Conduit, Equations 

(4.21) and (4,22) show that  by specifying any two var iables ,  one can 

f ind the  response of a t h i r d  i n  terms of the fourth var iab leo  This 

means, f o r  example, t h a t  i f  one spec i f ies  the impedance at one end 

(specify i? and y f o r  t ha t  end), then the  response of 

f o r  the  other  end can be foundo 

f e r  equations was given i n  Chapter 11. 

(4.21) and (4.22) are  of i den t i ca l  form to  those reported by severa l  

previous invest igators .  

t o  7 or t o  

Further discussion of the use of trans- 

Notice a l so  t h a t  Equations 

I n  general, the zeroth mode t r ans fe r  equations 

w i l l  always be of t h i s  same form, only the  value of t he  propagation 
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Figure 4,6. Variation of the  Zeroth Mode Spa t i a l  Attenuation 
Factor With Axial Frequency Number 
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operator r will change, depending upon the  o r ig ina l  equations of change. 

These t r ans fe r  equations have been presented by many previous workers 

and, thus, a r e  not an o r ig ina l  contribution of the  writer. They have 

been derived i n  t h i s  sec t ion  f o r  the sake of giving a grea te r  degree of 

completeness to  t h i s  chapter. 

Zeroth Mode Frequency Response 

I n  t h i s  section, the frequency response of a f l u i d  conduit with two 

types of terminations w i l l  be examined, 

nation impedance which is equal t o  the cha rac t e r i s t i c  impedance of the  

The f i r s t  w i l l  be f o r  a termi- 

l ine .  The second wfll be f o r  a zero termination impedance. 

Consider a f l u i d  condu5t as shown i n  Figure 4.5. Rearranging 

Equations (4.21) and (4.221, they may be wri t ten i n  an impedance form 

which gives  the  impedance of end 1 in terms of the termfnal end imped- 

ance, thus 

Specifying the spec ia l  case of a termination impedance equal t o  the  

l i n e  cha rac t e r f s t t c  impedance y i e lds  

which means t h a t  the impedance looking i n t o  end 1 w i l l  be the same as 

the l i n e  cha rac t e r i s t i c  impedance. 

tude and phase of 2, versus axial frequency number, Fnz = wL/co, with 

Figures 4,8 and 4.9 show the  ampli- 
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= vL/coro 2 , as a parameter, This was the axial damping number, Dnz 

computed from Equations (4.24) and (4.7). Notice t h a t  the amplitude f o r  

t h i s  case is a simple monotonically decreasing function with frequency 

numbero There a r e  no resonant conditions. 

nat ion impedance other  than Z2 = Zc9 then there  w i l l  occur resonant 

frequencies for the  impedance looking i n t o  end lo 

I f  one spec i f i e s  an;y termi- 

As a pa r t i cu la r  example of a termination impedance other  than Ze9 

consider the case where Z2 = 0- For t h i s  case, 

The amplitude of 

4.10 as a ftvlction of axial frequency number f o r  various values of the 

axial. dampiag number. 

= ~f t )pocoVo]  f o r  t h i s  case is p lo t ted  i n  Figure 

Notice the influence of the damping number. As 

damping number increases ,  the resonant frequencies decrease. Also 

notice  tha t ,  f o r  a given damping number, the damping e f f e c t  increases  

with frequency as evidenced by a decrease in resonant amplitude with 

each successively higher resonant frequencyo This e f f ec t  might also 

have been predie ted  from Figure 4.6 which shows increasing a t tenuat ion  

wEth increase i n  the frequencyo 

Zeroth Mode Transient Response 

I n  the previous sect ion,  a study w a s  made of the applfcat ion of the 

zeroth-mode t r ans fe r  equations t o  t he  frequency response of a f l u i d  con- 

du i t  with two types of terminal impedances and some important implica- 

t i ons  were noted. 

responses t o  study from an engineering point of view are the tfme 

Perhaps more p rac t i ca l  o r  informative type of 
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domain t rans ien ts .  The major problem, i n  t h i s  regard, is t h a t  the 

ac tua l  ca lcu la t ion  of time domain t r ans i en t s  are much more d i f f i c u l t  

than frequency type r.esponses. I n  t h i s  sect ion,  the time domain re- 

sponses of a f l u i d  l i n e  with the same two types of terminal impedances 

as examined i n  the previous sec t ion  will be discussed. 

It should be emphasized t h a t  by specifying the impedance at one end 

of the l i n e  the  response of any one var iab le  t o  any other  var iab le  f o r  

the  l i n e  can be determined. 

obtained i n  Equation (4.23). 

ante @ = Z,. 

This i s  not obvious from the  impedance form 

Take first the case of a terminal irnped- 
- 

The l i n e  equations now become 

Examfnation of Equation (4.26) w%ll reveal  t h a t  i t  is now possible,  

because of having spec i f ied  the fmpedance at one end of the  line, t o  
I - 

obtain the  response of Pi  t o  Tj , P i  t o  P j  , V i  to Tj or Ti to Fje The 

ttme responses of 

discussed. From Equation (4.26) 

t o  Fl and i ? ~  t o  fo r  impulses of P-J- w i l l  now be 

f? v,= - z c  
- 

and 

are the response equatfons. Let t ing Fl be an impulse 



and 

To obtain the time domain responses, use is made of the inverse Laplace 

transformation, o r  

and 

The ac tua l  inversion of these equations i s  ra the r  involved because of 

mathematical d i f f i c u l t i e s .  F. To Brown has done an extensive amount of 

work i n  the ca lcu la t ion  of f l u i d  l fne  impulsive responses along l i n e s  

s i m i l a r  t o  those indicated by Equations (4.30) and (4,311 m a k i n g  the  

numerical evaluatfon of these equations by the wr i te r  superfluouso 

Proceeding now t o  the case f o r  which the terminal impedance is zero, 

the equations become 

and 
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It may be r ead i ly  seen t h a t  one can now f ind  the  response of any one 

variable  t o  any other ,  

impedance at one end of t he  l i n e ,  

the response of F1 t o  a unlt s t e p  i n  'iil wfll be calculated.  

pu t t ing  71 = /s, 

This is again due t o  having specif ied the 

For the  purposes of t h i s  example, 

Thus, 
1 

o r 9  I n  the t i q e  domain 

6 - tco 

Evaluation of Equation (4,331 has been performed by a summation of the 

residues as described i n  Appendix Bo The r e s u l t s  are p lo t ted  i n  Figures 

4.11, 4.12, 4,13 and depict  the pressure h i s to ry  typ ica l  of water hammer 

f o r  three values of the  damping number, 

dispers ive and d iss ipa t ive  e f f e c t s  which v i scos i ty  has upon the  temporal 

response of a f l u i d  l i n e o  The d iss ipa t ion  r e s u l t s  i n  the at tenuat ion of 

a l l  frequency components with grea te r  a t tenuat ion  of the higher f r e -  

quency being evidenced by the f a c t  that pr inc ipa l ly  the fundamental f re -  

quency remains a f t e r  some f i n i t e  number of o s c i l l a t i o n s o  

r e s u l t s  i q t h e  OVtai%9ng o f f g 8  e f f e c t  f o r  each o s c i l l a t i o n  due t o  the 

f a s t e r  t rave l ing  high frequency termso 

These f igu res  c l e w l y  show the 

mspersfon 
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CHAPTER V 

EXPERIMENTAL VERIFICATION OF ZWOTH 

MODE TRANSFEB EQUATIONS 

Introduction 

To determine the  v a l i d i t y  of the t r ans fe r  equations developed i n  

the previous chapter f o r  the zeroth mode, an experimental study was 

designed and conducted, The experimental models were chosen on the  

bas i s  of having the grea tes t  possible control  of the accuracy of the 

var iables  concerned. 

were studied, 

Both frequency response and t rans ien t  responses 

Expertmental Frequency Response 

To experimentally ve r i fy  the zeroth mode t r ans fe r  equations from a 

frequency response standpoint, the ,apparatus  schematically shown i n  

Figure 5.1 was constructed. With t h i s  apparatus, the impedance at the  

reservoi r  end w a s  maintained a t  zero. Because of the pis ton dr iver  at 

the other 'end, the  veloci ty  there  could be varied i n  a sinusoidal manner 

a t  frequencies from 0 t o  about 100 cps. Since the  pis ton amplitude and 

dr iver  o s c i l l a t i o n  frequency were accurately control lable ,  the  ve loc i ty  

of the f l u i d  at the dr iver  end w a s  therefore precisely known. By posi- 

t ioning a pressure transducer near the piston, t he  impedance amplitude 

a t  the dr iver  end could then be obtained from recorded values of 

72 
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pressure and ve loc i ty  amplitudes by simply taking t h e i r  r a t io .  

Figures 5.2 and 4.3 display results of experiments performed wfth 

the  above described apparatus. 

ing theore t ica l  predict ions of the zeroth mode t r ans fe r  equations which, 

These f igures  a l s o  show the correspond- 

fo r  this case, reduce t o  Equation (4.25). Note the excel lent  agreement 

.between the  experimental results and the  theore t ica l  predictions of the  

zeroth mode equations, This f i n e  agreement subs tan t ia tes  t he  v a l i d i t y  

of t he  zeroth mode t r ans fe r  equations f o r  the  range of parameters 

given . 
Experimental Transient Response 

To examine the v a l i d i t y  of the zeroth mode equations from a time 

domain point of view, an experimental model has been chosen which repre- 

sen ts  the  condititons of the c l a s s i ca l  water-hammer problem, 

shows the physical layout of t h i s  model. It cons is t s  of a l i n e  with a 

constant pressure source a t  one end and a f a s t  act ing valve at the other  

end, With the valve i n i t i a l l y  open, f l u i d  flows from the  reservo3.r 

through the l i n e ,  valve and flow meter i n t o  a second reservofr.  

the valve is suddenly closed, the transducer located a t  the valve can be 

used t o  monitor the pressure response t o  the s t e p  change i n  flow result- 

ing from the valve closure,  

Figure 5e4 

When 

Figure 5.5 displays typical  experimental pressure traces resu l t fng  

Compari- from sudden valve closure with the above described apparatus. 

son of these r e s u l t s  with the  theoret icdl  predict ions of Figure 4.11 

demonstrates, as f o r  the frequency response case, an excellent agreement 

between theory and experiment. Thls fur ther  subs tan t ia tes  the v a l i d i t y  

of the zeroth mode t r ans fe r  equations developed i n  Chapter IV. 
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As a result of the excellent agreement between theore t ica l  and 

experimental r e s u l t s ,  it may be concluded that  the zeroth mode t ransfer  

equations a r e  a good model i n  the range of parameters of the t e s t s  con- 

ductedo In terms of damping numbers and frequency numbers, the ra.nge 

for these t e s t s  was 



CHAPTER V I  

THE HIGHER MODES OF VISCOUS PROPAGATION 

Introduction 

I n  Chapter I V ,  it w a s  found t h a t  the appl ica t ion  of the condition 

of zero f l u i d  ve loc i ty  at the  w a l l  of a r i g i d  conduit l e d  t o  a s e t  of 

equations r e l a t i n g  the parameters e, k, and Yo 

t i o n s  yielded an I n f i n i t e  s e t  of the eigenvalues with each set  corre- 

Solution of these equa- 

sponding t o  a mode of propagation. 

transformed ve loc i t i e s  and pressure were given by Equations (3.34) 

(3.35)4 and (3.36) and consisted of an i n f i n i t e  summation of a l l  the  

The general  expressions f o r  the 

modes, The purpose of t h i s  chapter is t o  delve more completely i n t o  

the  mathematics and physical meaning of these modesD 

Discussions o f  higher modes of propagation of acoustic type waves 

are extensive i n  the  l i t e r a t u r e  (e,go, 26, 27, 31); however, these all 

deal  wfth waves where v iscos i ty  has been neglected. In  t h i s  chapter,  

viscous propagation W i l l  be discussed, 

Higher Mode Eigenvalues f o r  Rigid Condtdt 

The cha rac t e r i s t i c  equations f o r  the  eigenvalues of a r i g i d  f lu ld-  

f i l l e d  conduit were demonstrated i n  Chapter I V  t o  be 

80 
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and 

For each s e t  of values of s9 v, co and pa, there  e x i s t s  an i n f i n i t e  

number of d i sc re t e  values of the parameters Yn9 kn., and f,, hence, 

eigenvalues, 

corresponds t o  a mode of f lu id  motion, 

discussed extensively i n  Chapter I V  and found t o  be of considerable 

importance i n  the modeling of a f l u i d  conduit, It w a s  found t h a t  the  

most important of the parameters was Y, the  propagation constant, and 

tha t  

Each family of numbers, represented by a value f o r  n, 

The n = 0 or  zeroth mode was 

w 
where 9/, represented the s p a t i a l  a t tenuat ion fac tor  and c = - repre- 

sented the  phase ve loc i ty  of the disturbance, 
-fc 

For the  hfgher modes, 9/ 

is  a l s o  important and has the  same physical significance.  

By use of the  procedure described i n  Appendix A, Equations (6 , l )  

and (6,2) have been solved f o r  t he  T P s  of three modeso Figure 6 , l  shows 

a p lo t  of Yr ro versus the r ad ia l  frequency number, fn)l"O - f o r  a ty-pieal 
e, 

value of the r a d i a l  damping number, , Figure 6,2 shows the eorre- 
0 0  

sponding dimensionless phase velocfty,  c/co, f o r  these three modes, 

Figures 6.3 and 6.4 demonstrate the var ia t ion  of the  r e a l  pa r t  of Y and 

/co with r a d i a l  damping number fo r  the first mode, It is Important t o  

note tha t  a discontfnuity occurs i n  each of the higher mode values of Y. 

C 

This discont inui ty  might be termed a cutoff frequency s ince it  separates  

frequency regions of very hfgh s p a t i a l  a t tenuat ion and very low s p a t i a l  
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attenuation, Below t h i s  cutoff frequency, the  contribution of a par t fc-  

ular mode t o  the over-all disturbance tsill be damped i n  a r e l a t i v e l y  

short  distance from its point of or igfn,  leaving only the  zeroth mode 

t o  be propagated any s ign i f i can t  distance,  

if an example is considered, 

This becomes very evident 

Take the  case of a disturbance in the  

f i r s t  mode i n  a pipe at a radial. frequency number of looo From Figure 

6 . 3 ,  i t  may be seen tha t  t he  s p a t i a l  a t tenuat ion f ac to r  is yrro = 3.90 

This means t h a t  i n  a dis tance of one pipe radius from the source, t he  

o r  O o 0 2 0  Thus, disturbance w%ll have decayed by a fac tor  of e 

the disturbance ( f i r s t  mode), i n  magnitude, had decayed t o  two per cent 

-r 0 L" r o  

of its o r ig ina l  value. 

It is in t e re s t ing  t o  contrast  the hfgher mode s p a t i a l  a t tenuat ion 

and phase ve loc i ty  f o r  viscous propagat35on as shown in Figures 6*1  

through 6,4 d t h  the  corresponding DO vfseosi ty  case as presented i n  the 

l i t e r a t u r e ,  

each mode would be zero above t h e  cutoff frequencye 

For the ease of no vfsecssfty, the s p a t i a l  a t tenuat ion f o r  

The zeroth mode 

would have zero s p a t i a l  attenuatfon fo r  a l l  frequeneies, 

veloci ty  f o r  the ease of no vfseos i ty  is zero below the cutoff frequency 

The phase 

i n  contrast  t o  a f fn ike  value of phase vePeaefty below the cutoff when 

v iscos i ty  i s  included, 

Veloc%ty P ro f i l e s  

To get a be t t e r  physicdl f ee l ing  f o r  the higher modes, the axial 

ve loc i ty  p r o f i l e s  f o r  the first few modes f o r  a r i g i d  f l u f d  eonduPt w f l l  

now be obtained, 

axial ve loc i ty  i n  the Laplace dsmafn w a s  found t o  be 

From Equation (3.351, the general  expression f o r  the 
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The condition of zero a x i a l  ve loc i ty  a t  the  w a l l  y ie lds  the  equation 

which along with Equatfon ( 3 0 3 5 ) ,  gSves 

The function Fzn(r> wf lb  be e&Eed the axial. ve loc i ty  p ro f i l e  

function f o r  the  nth node. For a given damping number and frequency 

number, t h f s  p ro f f l e  function may be calculated f o r  each mode as a func- 

t i on  of re 

nary par ts .  This function has been calculated f o r  four modes (0 ,  1, 2, 

and 3 )  f o r  various combinatfons of frequency number and damping numbero 

Figures 6.5., 6.6, and 6,7 display the results of these calculat ions.  

Note t h a t  the  higher modes (I9 2, and 3 )  r e t a i n  the  same general. shape 

fo r  the various combinations of frequency number and damping number. 

The zeroth mode p ro f i l e ,  on the  other  hand., has a shape which 2s highly 

In  general, F (r) is  complex, having both r e a l  and imagI- !2n 

dependent upon these two parameters. 

Serbs Expansfon 

Thus far a l l  e f f o r t s  have been concentrated on sa t i s fy ing  the 
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3 r d  MODE 

( 

3 r d  MODE 2nd MODE 

Figure 6.5. Axfal Velocfty P r o f i l e  Function, FZ,(r>, fo r  'POUP 
Modes (Fm = 002, la,, O.OOl>e 



Figure 6,6. Axial Velocity 'ProfSle Function, F z n ( ~ ) 4 3  for Four 
Modes (FnP = 002, Dnr = O,Ol> 



-I 

Figure 6,7. Axial Velocity Profele Function, F,,(se), f o r  Four 
Modes (F, = 1.0, Dm = 0-01) 



f l u i d  conditions at the  conduft w a l l  and obtainfng the r e s u l t s  eigen- 

functionso What about satisfying end conditions f o r  a f l u i d  conduit? 

Suppose tha t  the  transformed condition a t  the end z = 0 f o r  a f l u i d  

conduit i s  G(r)j that is, 

The problem is t o  ca lcu la te  the  eoef f ie fen ts  %n the expansion given by 

Equation (6,310, t h a t  is, t o  f ind  Bn such tha t  

One might think tha t  s ince FZn(r) is a l i n e a r  sum of the eigenfmctions 

r> and J (k,r) t ha t  t h f s  problem would be a 

ordinary Fourier-Bessel expansion methods. Such 

i s  because a set of normalfzrng functions 5s not 

one could obtain a s e t  of functfons FVZmgr) such 

JO( Pn 0 simple extension of 

is not the caseo Thfs 

obvfouse Suppose tha t  

t ha t  

I functions *FqZm(r) and in tegra te  t o  yield 

'It should be noted -that t h l s  discussfon makes no mention of the 
usual mathematical problems of convergence, mfqueness, e t c ,  
w r i t e r s s  purpose is not t o  examine the mathematical delfeaefes,  but 
r a the r  t o  attempt to  q8get  an answerBqo 

The 



Thus f a r  the wr i te r  has not found a set  of normalizing functions; how- 

ever, a scheme is presented below which w i l l  be seen t o  show a l l  indica- 

t ions  of sa t i s fy ing  the des i r e s  proposed of Equation (6.4) * 

Kaplan (321, i n  his dfscussion of Fourier s e r i e s  has given the  fo l -  

lowing theorem: 

. Theorem L e t  f ( x )  be p i e c e d s e  continuous f o r  

The coe f f i c i en t s  of the p a r t i a l  sum 

? G + & \ C O S X + ~ ~ ~ & ~ + * * * +  I ~ ~ s ~ + ( - b n 5 ~ ~ x  

of the Fourier s e r i e s  of f ( x )  a re  precisely those among 

a l l  coe f f i c i en t s  of the functions 

which render the square e r r o r  

n a minimum. Furthermore, the minfmum square e r ro r  E 

s a t i s f i e s  t he  equation 

In  a manner analogous t o  the precedfng theorem, the coef f ic ien ts  

of Equation (6.4) dll be evaluated. Assuvne t h a t  the coef f tc fen ts  of a 

p a r t i a l  sum, S (T), are known; t ha t  fs k 

h=0 

Define a square e r ro r  as 
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Hypothesize tha t  the coe f f i c i en t s  Bn a r e  those tha t  minimize E;,. 
means t h a t  the  coef f ic ien ts  can be evaluated one at a time, s t a r t i n g  

with Bo, by simply mfnimizing E;, with respect  to  Bk. 

desired t o  ffnd the coef f ic ien t  B where the  ffrst k are known, Then 

Thfs 

Suppohe it  i s  

k+l 

JO 

If %+1 is t o  be a minimum with respect t o  €3 

have 

it is necessary t o  k+l  

APPlyrlng the condition of Equation (6.9) t o  Equation (6.8) gives 

This method has been used t o  evaluate the first s f x  coe f f i c i en t s  

for  the case of a pfs ton o s e i l l a t b g  -Sn a r fg id  conduit, Since th5s 

rmplies a constant velocf ty  a t  the p is ton  face,  G ( r >  = 1 w a s  used f o r  

the boundary conditfon, The r e s u l t s  of the calculat ion are tabulated 

i n  Table 111. Util fzlng these coef f ic ien ts ,  the s i x  term approximation 

of the  transformed axial ve loc i ty  has been calculated f o r  various axial 

distances from the p is ton  face. 

proximation is given by the first six terms of Equation (60310 

r e s u l t s  a r e  graphical ly  demonstrated i n  Figure 6-8, 

of t he  p r o f i l e  from f l a t  a t  the  pis ton to  e s sen t f a l ly  the zeroth mode 

p ro f i l e  beyond 5 = O05, 

The relatEonshfp describing t h i s  ap- 

The 

Note the t sansf t ion  

Z The frequency number f o r  these calculat ions was 
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002 which is well below the cutoff frequency f o r  a l l  of the  hfgher 

modes, This explains why only the  zeroth mode is propagated any grea t  

distance from the  piston. 

TABLE I11 

TABULATION OF THE FIRST SIX COEFFICIENTS OF THE SERIES EXPANSION 
FOR A PISTON OSCILLATING I N  A R I G I D  CONDUIT 

(Fm = 02, Dm = 001) 

Experimental Investfgation of Vfseous Modes 

A s  a r e s u l t  of mathematically dernonstratlng the  existance of the 

i n f i n i t e  se t  of viscous modes of propagatkon, the writer became eager t o  

obtain an experimental demonstration of t h e i r  existance,  By viewing the 

ac t ion  of a birefr ingent  f l u i d  i n  the  neighborhood of an o s c i l l a t i n g  

pis ton i n  a plexiglass  tube, the  e f f e c t s  of the  higher modes have been 

observed. 

Figure 6.9 schematically describes the experfmental apparatus usedo 
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The working f l u i d  consisted of the following components by weight: 

water - 85% 

milling yellow dye - 1.4% 
glycerine - 13.6% 

Thi s  f l u i d  exhibited the property of op t i ca l  b i re f rengencz  when i n  a 

s ta te  of shear stress. 

The test  sec t ion  w a s  viewed between crossed polar izer  planes with a 

The pis ton w a s  o sc i l l a t ed  at a l i g h t  source behind the first polar izer .  

constant frequency of about 2 cps and several photographs were taken t o  

record the v isua l  e f f ec t .  These photographs a r e  displayed i n  Figure 

6.10, 

the f lu id ,  

the observed e f f e c t  w a s  a c tua l ly  an in tegra t ion  of a l l  t he  e f f e c t s  

across  the tube, 

ing upon the  posi t ion of the piston, 

between the photographs, 

p ic tures  were taken, The important phenomena whfch is demonstrated by 

these p ic tures  is t h a t  there  appears t o  be a boundary e f f ec t  near t he  

p is ton  which is damped out at a Z/D o f  about ,5 measured a x i a l l y  from 

the pis ton face, Thepat terns  for  Z / D 7 * 5  represent the s t a t e  of shear 

stress of the  zeroth mode only, s ince a l l  higher modes a r e  damped out,  

The pa t te rns  fo r  Z / D (  ,5 represent the  s t a t e  of shear s t r e s s  f o r  the 

The pa t te rns  observed represent the  s t a t e  of shear stress within 

Since the phenomena w a s  viewed across  a cy l indr ica l  tube, 

The pa t te rns  were observed t o  change with time depend- 

This accounts fo r  the difference 

No record was made of pfston posi t ion when the  

sum of a l l  the  modes. 

Referring back t o  Figure 6089 which represented the  near pis ton 

*A considerable amount of work with birefr ingent  l i qu ids  has been 
done by Thurston (3310 
theory of l i q u i d  birefrengence- 

Frenkel (34) a l s o  gives  a discussfon of t he  



Figure 6.10. Photographs of Experimentally 
Observed State of Shear 
Stress 
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veloci ty  p r o f i l e s  obtained from a summation of a few modes, an interpre-  

t a t ion  of the  stress pa t te rns  obtained experimentally will now be given, 

For the axi-symmetric case here being discussed, t he  transformed shear 

stress may be expressed as 

The l i n e s  observed i n  Figure 6010 represent the conditions for which 
f i  
T = constant. re 

c\ 
If one approximates 'c by rz 

l i n e s  of constant shear s t r e s s  can be obtained from the predtlcted 

pis ton axial veloci ty  p r o f i l e s  of Figure 6,8, Typical r e s u l t s  of 

near 

such a 

procedure are shown i n  Figure 6e11, 

the  theore t ica l  s t a t e  of shear s t r e s s  dfsplayed i n  t h i s  f igure  and the 

experfmental r e s u l t s  shown %n Figure 6 ~ 0 ~  

tween theory and experiment appears t o  sgbs tan t ia te  the existence of 

these higher modes of viscous propagation as predfeted by the  theory. 

Note the obvious s imi l a r i t y  between 

Thfs excellent agreement be- 

Dfscussfon 

This chapter has been devoted t o  a theo re t i ca l  and experimental in- 

The r e s u l t s  may ves t iga t ioq  of the  higher modes of viscous propagation. 

be summarized as follows: 

1, The higher modes were shown t o  have a r e l a t i v e  cutoff 

frequency, below,yhfch t h e i r  s p a t i a l  a t tenuat ion i s  very 

grea t ,  These modes d n s t r a t e  a f i n f t e  phase velocfty 

below t h i s  cutoff frequency which i s  opposed Lo the  re- 

sults which have been published concerning higher modes 

. r  
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of propagation neglecting v iscos i ty  (27) , 

cutoff frequ'ency, the higher modes have s p a t i a l  attenua- 

t ion ,  but of a much smaller magnitude than below the  

cutoff 0 

"he r dependent part of the axial ve loc i ty  w a s  found to 

be representable, f o r  each mode, i n  terms of a p ro f i l e  

function, FZn(r), hav%ng, i n  general, a real and i m a g i -  

nary pa r t ,  

found t o  be sensf t ive  t o  values of the frequency and 

damping numbers, For the  higher modes, the  general 

shape stayed much the  same, regardless  of the values of 

these two numbers, 

I n  order t o  s a t i s f y  end conditlons f o r  a f l u i d  trans- 

mission l i n e ,  i t  was found necessary t o  obtain a s e r i e s  

expansion i n  terms of the ve loc i ty  p r o f i l e  functions 

(eigenfunctions) 

were not obtainable by ordinary methods s ince a set  of 

orthogonal functions (orthogonal t o  the eigenf unc t fons)  

w a s  not known, 

evaluate the  coef f fc ien ts  one a t  a time by a method of 

minimizing the  square e r r o r e  The absolute v a l i d i t y  of 

t h i s  method is undetermined at t h i s  t i m e ,  but t he  results 

seem to  demonstrate i ts p r a c t i c a l i t y o  

A flow v isua l fza t ion  techdque  w a s  used t o  obtain photo- 

graphic records of the state of shear stress near an 

osc i l l a t ing  p is ton  i n  a tube, In te rpre ta t ion  of the  

results f n  terms of the theo re t i ca l  predict ions seem to 

Above t h e i r  

2. 

The p r o f i l e  shape f o r  the  zeroth mode w a s  

3 .  

The coef f ic ien ts  of th i s  expansion 

It w a s  found t o  be possible,  however, t o  

4, 
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val ida te  the existence of the higher modes. 

To the best  of t he  wr i t e r ' s  knowledge, the discussion of the higher 

modes of viscous propagation as given i n  t h i s  t r e a t i s e  is the  first ever 

presented. It is hoped that  i t  may represent an advance i n  the s t a t e  of 

the art. 



1. 

2. 

3 .  

4 0  

CHAPTER V I 1  

NON-RIGID WALL EFFECTS 

Introduction 

The purpose of t h i s  chapter is t o  out l ine an ana ly t ica l  approach 

t o  the  problem of determining the e f f e c t s  which non-rigid walls have on 

the transmission propert ies  a viscous f l u i d  carrying conduit. 

there a r e  fou r  types of conduit w a l l s :  

Basically, 

Rigid walls - Those walls which a r e  assumed per fec t ly  

r i g i d  and do not give under the influence of a pres- 

sure force,  

impedance, i.e., v -00 

Pressure re lease  w a l l s  - Those walls which j u s t  con- 

t a i n  the f l u i d  but exert  no force on the  f lu id .  This 

type has a zero r a d i a l  impedance. 

Elas t ic  f l ex ib l e  w a l l s  - Those w a l l s  which give under 

pressure and have some f i n i t e  r a d i a l  impedance but do 

not propagate a disturbance i n  the a x i a l  direct ion.  

Elas t ic  stiff w a l l s  - Those walls which have a f i n i t e  

r a d i a l  impedance and do propagate a disturbance i n  the  

ax ia l  direct ion.  

This type of w a l l  has an i n f i n i t e  r a d i a l  

y r  

The model f o r  a r i g i d  conduit w a s  developed i n  Chapter I V o  The 

remainder of t h i s  chapter will be devoted t o  discussions of conduits 
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with e l a s t i c  f l ex ib l e  and e l a s t i c  s t i f f  w a l l s .  

E l a s t i c  Flexible  Walls 

I f  one is studying the  dynamic cha rac t e r i s t i c s  of f l u id - f i l l ed  

e l a s t i c  tubes, such as rubber, where the major e f f e c t s  are those due t o  

tube i n e r t i a  and t e n s i l e  s t r e s s  i n  the w a l l ,  then the  equation of motion 

f o r  the tube is ( 3 5 )  

where 

h = tube w a l l  thickness 

r = tube radius  

E 

6 = w a l l  r a d i a l  def lec t ion  

0 

= Young's modulus fo r  tube material  t 

r 
= f l u i d  pressure at tube w a l l  

pt = density of tube w a l l .  
Pt 

Applying the  Laplace transformation t o  Equation (7.1) gives 

or  

Noting tha t  the transformed r a d i a l  ve loc i ty  and def lec t ion  for t h e  tube 

wall a r e  r e l a t ed  by Vrt = Sbr4 

becomes 

A 

the  r a d i a l  impedance f o r  the  tube w a l l  



For these calculations, ,  i t  will be assumed t h a t  the w a l l  de f lec t ions  are 

small compared with the  tube rad ius  so the conditions at the w a l l  re- 

quire t h a t  the  a x i a l  f l u i d  ve loc i ty  be zero and the f l u i d  r a d i a l  imped- 

ance a t  the w a l l  equals t he  tube r a d i a l  impedancec 

(3.30) and (3.33),, the  f l u i d  r a d i a l  impedance a t  the wall is 

From Equations 

The condition of zero axial f lu id  veloci ty  a t  the  w a l l  y i e lds  from 

Equation (3.31) 

(7.4) 

Combining (703) and (7.4) t o  eliminate the a r b i t r a r y  constants, A and B 

yield 

which is the  r a d i a l  impedance of the f l u i d  at t h e  w a l l o  

t o  Equation (7 03) gives the cha rac t e r i s t i c  equation 

Equating t h i s  

which, along with the  equations 
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completely r e l a t e  the  eigenvalues. 

w a s  discussed previously, the eigenvalues were found t o  depend only upon 

two dimensionless parameters; the r a d i a l  damping number and the r a d i a l  

For the  case of a r i g i d  w a l l ,  which 

frequency number. For the case now being considered, the eigenvalues 

are found t o  a l s o  depend upon the tube w a l l  parameters, as might have 

been expected. 

Equations (7.6) and (7.7) have been solved t o  obtain 'I' f o r  the  

zeroth and first modes. This w a s  done for one s e t  of the  tube w a l l  

parameters and the r e s u l t s  a r e  displayed i n  Figures 7.1, 7.2, 7.3,  and 

7.4 i n  comparison with the  r i g i d  w a l l  r esu l t s .  

performed with the a id  of an IBM 7040 by a procedure similar t o  t h a t  

out l ined i n  Appendix A. 

the following: 

The calculat ions were 

Examination of the graphical results reveals  

1. For the zeroth mode, t he  spatial at tenuat ion is increased 

due t o  the  f l ex ib l e  w a l l  as opposed t o  a r i g i d  w a l l .  '&e 

increase is so  g rea t  i n  the  higher frequency regions that 

one can consider the f l ex ib l e  conduit t o  a c t  as a low-pass 

f i l t e r .  The cutoff frequency corresponds approximately t o  

the natural  frequency of the tube w a l l .  

Also f o r  t he  zeroth mode, the e l a s t i c  f l e x i b l e  w a l l  i s  seen 

t o  decrease the  phase ve loc i ty  with the minimum value 

2. 

occurring near the  natural  frequency of the tube w a l l .  

Statements (1) and (2)  above appear t o  be general ly  va l id  regard- 

l e s s  of the f l u i d  and tube w a l l  parameters. 

and 7.4 show tha t ,  while there  is a considerable e f f e c t  of t he  e l a s t i c  

w a l l  upon the  first mode s p a t i a l  a t tenuat ion and phase veloci ty ,  no 

Examination of Figures 703 
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general statements can be made regarding the e f f e c t s  as was t rue  f o r  the 

zeroth mode. 

Elas t ic  S t i f f  Walls 

The approximate equations of motion f o r  a thin-walled elastic s t i f f  

pipe as given by Lin and Morgan (29, 36)  are, neglecting ro ta ry  i n e r t i a  

e f f e c t s  

and 

where the tube w a l l  a x i a l  and r a d i a l  p a r t i c l e  displacements a r e  given by 

the perturbation equations 

and 

For these equations, the  following def in i t ions  hold: 

h. zz Poisson's r a t i o  

h tube w a l l  thickness 

K shear eonstant (29, 36) 

G E modulus of r ig id i ty .  
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These equations of motion were used by Lin and Morgan t o  study the  

propagation o f  disturbances i n  non-viscous l iquids .  

t ions  t o  f ind  the  wall impedance, the  cha rac t e r i s t i c  equation fo r  propa- 

gat ion i n  a viscous l i q u i d  w i l l  now be derived. 

Using these equa- 

To the best  knowledge 

of the writer, t h i s  represents  the first such discussion of the propaga- 

t i o n  i n  a compressible, viscous l i q u i d  contained within an elastic-stiff 

conduit. 

Transforming the equations of tube motion and assuming solu t ions  of 

the form 

0 
where A ind ica tes  transformed quant i t ies ,  yields ,  a f t e r  el iminatix 6% 

and Eo9 

!h t 670 a3 (s,& 1 = Q, P& / e  

and 



Solving f o r  the r a d i a l  tube impedance gives  

It should be recognized tha t  Equation (7.8) is the counterpart of (7.3) 

,which w a s  the tube wall impedance equation f o r  the case of e l a s t i c  

f l e x i b l e  walls. Proceeding i n  the same manner as previously done, 

tha t  is, s e t t i n g  the tube w a l l  impedance equal t o  t h e  f l u i d  impedance 

of the wall y i e lds  the equation 

Equations (7.7) and (7.9) now completely describe the eigenvalues for 

an e l a s t i c - s t f f f  viscous f l u i d  carrying conduit 

From t h i s  point,  the  ca lcu la t ions  of the eigenvalues f o r  var5ous 

types of w a l l s  must be done with the computer i n  a manner similar t o  

t h a t  employed e a r l i e r  i n  t h i s  chapter, The eigenvalues have not been 

calculated for t h i s  easeo 



CHAPTER V I 1 1  

DEVELOPMENT OF TAPERED-LWEZI MOD& 

Introduction 

I n  Chapter I V ,  a de ta i led  discussion of a f l u i d  condait model based 

upon the zeroth mode t r ans fe r  equations w a s  given. 

v a l i d i t y  of this model was experimentally established. 

however, t ha t  despi te  its v a l i d i t y  and accuracy, the  model i s  mathe- 

matically unwieldy when used t o  solve everyday engineering problems i n  

the time domain, 

verse transformation f o r  the  water hammer problem dlscussed i n  Chapter 

IV.  A considerable amount of time and work w a s  needed t o  solve t h i s  

very simple case involving a s ingle  l i ne .  P rac t i ca l  everyday engineer- 

ing problems may involve many l i n e s  interconnected with valves, accwau- 

l a t o r s ,  e tc ,  

with the  a i d  of a d i g i t a l  computer, but a time domain ana lys i s  would be 

almost impossible, 

f i e d  o r  approximate engineering model which would be useful i n  the  t i m e  

domain ana lys i s  of complex f l u i d  systems. 

expand the  hyperbolic functions,  cosh T(S) 

I n  Chapter V, the  

It m u s t  be said,  

A s  an example, see Appendix B which describes the  in- 

The frequency analysis  of such a system can be handled 

The need should be evident, therefore,  f o r  a simpli- 

The approach taken here is t o  

and s inh  r(S1 which appear i n  

the zeroth mode t r ans fe r  equations, as i n f i n i t e  products of second order 

polynomial terms, 

recent ly  by Oldenberger and Goodson (121, but the approach taken here 

This method is not new, having been reported most 
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r e s u l t s  i n  a set  of t ab le s  o r  curves from which the engineer can obtain 

the proper coe f f i c i en t s  t o  be used i n  the  polynomial terms. 

Development of Model 

Recall t h a t  the  conduit t r ans fe r  equations may be wri t ten i n  the  

form 

and 

For the solut ion of problems requiring a time domain analysis,  inverse 

transformations involving the  above equations a r e  extremely time con- 

suming, It becomes, therefore,  desirable  t o  develop va l id  engineering 

approximations t o  these equations i f  possible 

Consider the poss ib i l i t y  of expressing the hyperbolic operator 

functions i n  the  i n f i n i t e  product forms. 

(8.1) 

and 

The values of the  constants ccn, psns wcn and w 

solving f o r  the values of S 

s a n d  wn may then be found by noting tha t  

are t o  be obtained by sn  

at the zeroes of Gosh r(s) and s inh RS). n 
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Figures 8.1, 8.2, 8.3, and 8.4 display p l o t s  of rcn, rsn, Fen, and Fsn 

versus axial damping number, To use these p lo t s ,  i t  is necessary only 

t o  ca lcu la te  the dimensionless damping number f o r  a l i n e  

QJz=  - u L  (804) 
T C 2  

and then read of f  t he  corresponding values f o r r ,  and Fn. 

given by 

On is then 

w,= -. Fh 
L 

I n  the above equations 

v 5 f l u f d  v i scos i ty  

L E conduit length 

= Isentropic  speed of sound i n  f l u i d  
cO 

r ins ide  conduit radius.  
0 

Having now developed t h i s  approximate engineering model, i t s  

v a l i d i t y  and l imi t a t ions  remain t o  be determined, 

Comparison of Exact and Approximate Models 

Since the  engineering model which has j u s t  been developed i s  an 

approximation of the 'qexactg9 model or zeroth mode t r ans fe r  equations, 

the measure of i ts accuracy can be e a s i l y  determined by d i r e c t l y  com- 

paring the two models, 

t rans ien t  responses f o r  the  two eases-  

of Equations (Sei> and (8*2) or 

This may be done by studying the  frequency and 

Consider then the  approximations 
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and 

SL Here r(s) is being approximated by 

Figures 805 and 806 display p l o t s  of t he  amplitude and phase of 

cosh T(s) versus frequency number f o r  two typica l  values  of damping 

number. 

Figure 8.7 and 8.8 show similar comparisons f o r  two terms of the 

approximate model 

not p lo t ted  s ince the  r e s u l t s  a r e  much the  sameD 

/ co  i n  the  s inh  r(s equation. 

Also shown a r e  the corresponding one-term approximations. 

The corresponding comparisons f o r  s inh  r(s> were 

From the r e s u l t s  of the frequency response cornpadson of  the  exact 

and approximate models, it may be concluded t h a t  the  use of a one-term 

approximation gives  excel lent  r e s u l t s  up t o  somewhat beyond the  first 

c r i t i c a l  frequency. The use of two terms of the approximation improves 

the r e s u l t  up to  j u s t  beyond the  f i r s t  c r i t i c a l  frequency, but does not 

predict  well the values around the second c r i t i c a l  frequency, The use 

of more terms would improve the r e s u l t  around the  second c r i t i ca l .  f re-  

quency. It now remains t o  compare the  exact and approximate models from 

a t r ans i en t  response standpoint. 

A s  an example, consider the water hammer problem which was analyt-  

i c a l l y  studied by use of the zeroth mode t r ans fe r  equations i n  Chapter 

I V  and which was experimentally s tudied as described i n  Chapter Vo 

Figure 5.4 shows the  physical layout of the  model. 

response f o r  the pressure at the  valve due t o  a V 

The Laplace domain 

amplitude s t e p  change 
0 

i n  the ve loc i ty  is found from Equatgon (4.321, or 
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The evaluation of the exact inverse of t h i s  equation, as discussed i n  

Appendix B, w a s  cumbersome and impractical  f o r  most cases. Therefore, 

the n = 0 terms of the approximate model w911 now be used t o  predict  the 

same pressure t rans ien ts  due t o  the sudden valve closure. 

valve of the damping number f o r  t he  f i n e  which w a s  studied experimen- 

" ta l ly ,  i.e., Dn = *02, i t  may be seen from Figures 8.1 and 8.2 tha t  

Using the 

cc0 = 0.088 

Since c = 4400 f t /sec and L = 100 f t  f o r  t h i s  case 
0 

The response equation now becomes 

The inversion of the  above equation may be eas i ly  accomplished and 

y ie lds  

This approximate so lu t ion  i s  shown p lo t ted  i n  Figure 8.9 i n  comparisor: 

with the  exact r e s u l t s  given previously i n  Chapter I V .  

model appears t o  match w e l l  the  exact r e s u l t  from a frequency standpoint 

The approximate 

and a l so  i n  regard t o  the  at tenuat ion of the  fundamenta1,frequency com- 

ponent. For many typical  engineering calculat ions,  r e s u l t s  such as this 

would be welcome considering the  d i f f i c u l t i e s  encountered i n  obtaining 

exact answers 
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Application of Model i n  Problem Solution 

I n  t h i s  sect ion,  use will be made of the  approximate model i n  the  

so lu t ion  of two typ ica l  problems. 

demonstrated. 

In  t h i s  way, its u t i l i t y  can be 

Example Problem 1 

Consider the f l u i d  system i l l u s t r a t e d  i n  Figure 8.10. Water is  

i n i t i a l l y  flobdng from one reservoi r  through the  l i n e  and valve i n t o  

another reservoir .  The valve i s  then closed i n  such a manner t h a t  the  

valve area versus time h i s to ry  is as shown i n  Table IV. 

t o  determine the corresponding pressure h i s to ry  upstream of the valve. 

The Laplace domain response equation fo r  the pressure upstream of 

The problem is 

the valve i n  terms of the corresponding fltlfd ve loc i ty  i s  the same as 

f o r  the  water hammer problem of Chapter IV, This response equation is 

Ut i l iz ing  one term of the approximate model y i e lds  

For the‘ problem here being considered, t h f s  response equation can best  

be solved i n  the time domain s ince  the  valve a rea  h i s to ry  is a compli- 

cated polynomial i n  time. 

y i e lds  (including a l i n e a r  flow res i s tance  term, R lq ( t ) )  

Expressing Equation (8 .6)  i n  the time domain 



PRESSURE ""€\ 

UNITS: INCHES, POUNDS, SECONDS, RADIANS 

TRANSDUCER 

PRESSURIZED 
RESERVOIR 

FLUID 

Pipe Dimensions 
I. D. 3.875'' 
Length 276.0" 
Wall Thickness 0.0625" 
Youngs Modulus of Elasticity 12 x lo6 

DOWNSTREAM 
RESERVOIR 

Adiabatic Modulus of Elasticity of Fluid 32 x lo4 
Atmospheric Pressure 8.7 (Static pressure maintained below 

Fanning Friction Factor 0.012 
Initial Static Pressure at Valve 21.42 psia 
Fluid Density at Valve 0.036995 

valve during closure, psia). 

Figure 8,100 Schematfc of Physical Layout f o r  Example Problem 1 

TABLE IV 

VALVE AREA DATA FOR MAWLX PROBLEM 1 

Effective Flow Area of Valve vs Time 

Time 
0.000 
0 010 
0.030 
0.050 
0.078 
0 * 110 
0.142 
0.175 
0.205 
0.236 
0.261 

Area 
8.34 
8.30 
7.49 
6.36 
4.74 
3.47 
2.39 
1.57 
.84 
.35 . 00 

9th degree equation of above points 

Area = 36,098,169T'-27,651,150T8 + 5,290,046T7 

+662,432T6 -210,542T5 -41,747T4 + 16,928T3 -1,707T2 +9.226T +8.347 



Here, q ( t )  i s  the flow rate a t  the valve. 

Solution of Equation (8.7) has  been ca r r i ed  out on the d i g i t a l  

computer and the r e s u l t s  are p lo t ted  i n  Figure 8.11. Also shown f n  t h i s  

figure are r e s u l t s  of an experiment car r ied  out  a t  the  Marshall Space 

F l ight  Center, Huntsvil le,  Alabama. The ana ly t i ca l  predict ions agree 

well with the  experimental results i n  the ea r ly  s tages  of  valve closure 

but deviate considerably i n  the la ter  s tages .  

l ieved to  be pr inc lpa l ly  due t o  e r r o r  i n  the ana ly t i ca l  expression f o r  

!?&is deviat ion is be- 

the valve a rea  compared with the ac tua l  valve area which occurred during 

the experiment. 

Example Problem 2 

For t h i s  example consider the simple hydraulic system shown i n  

. Figure 8.12. 

described by the three equatfons 

It is assumed t h a t  the  dynamics of t he  valve and load are 

and 

A= ZL$2 '  

The constants  of t he  system are given below. 

2 m = 0.0002 tb -sec / in 

b = 0.01 lb -see/in 

k = 50 Ib / in  

(8.10) 

2 A = 0.2 i n  

C = 0.00126 i n  /Ib -sec 4 
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500 p s i  

10 f t -  

0.2 i n  

2 4  

ft2/sec 

e 0 = 4500 f t /sec,  

A frequency ana lys i s  of the valve w i l l  be made by f i r s t  neglecting 

l i n e  e f f e c t s  and next by including a one-term approximation of the  l ine .  

Considering f i r s t  no l i n e  e f f ec t s ,  the  Laplace domain equation describ- 

i n g  the displacement of t he  valve i n  terms of the input Y i s  

XC.) = K VCS, (8.11) 

L w a 2 +  bs+ (k+ c z ~ A 9 ) ]  

A p lo t  of  the amplitude and phase of X(iw)/Y(ia) i s  shown i n  Figure 

8.13. 

It 5s deslred now t o  include the l i n e  e f f e c t s  by rnodeltng i t  with 

one term of the approximate model. 

damping number t o  allow the use of Figures 8.1 and 8.2 f o r  finding the  

l i n e  parameters s,, and Wc, gives 

F i r s t  ca lcu la t ing  the  l i ne  axial 

Thus, 
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Figure 8.13. Amplitude and Phase of X(iu)/Y(iw> Versus 
Frequency With and Without Line Effec ts  
f o r  Example Problem 2 
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with 

sm= 0.05, = 353.0 

“his leads  t o  

and 

(8.13) 

Combining Equation (8,8), (8.91, (8.10)~ (8,12), and (8.13) gives  a re- 

sponse r e l a t i o n  f o r  X(s> i n  terms of Y(S> o r  

where 

The amplitude and phase of X(iw>/Y(iw> from Equation (8.14) i s  plot ted 

i n  Figure 8,13 i n  comparison with the r e s u l t s  of Equatlon (8011> which 

was f o r  no l i n e  e f f ec t s .  There is  a dramatic difference between the 

r e s u l t s  of neglecting and including l i n e  e f fec ts .  The simplici ty  of 



using the approximate l i n e  model i n  t h i s  ana lys i s  is a lso  apparent. 

Discussion 

I n  t h i s  chapter, an approximate engineering model of a f l u i d  con- 

dui t ,  based upon i n f i n i t e  product expansions of t he  cosh r(s) a n d  

.sinh T(s) operators i n  terms of second-order polynomials, has been 

presented. The basic idea  f o r  t h i s  development was obtained from a 

paper by Oldenberger and Goodson (a) .  
tended t h e  method t o  the extent t ha t  i t  is now passible t o  obtain the  

necessary polynomial coe f f i c i en t s  from the curves presented herefn. 

Thus, the  method might now be considered a handbook elrgineering method. 

The v a l i d i t y  of the method w a s  examined by comparing it  with "exact" 

model r e s u l t s  from Chapter I V  and a l s o  by demonstrating Its a b i l i t y  t o  

predict  experimental r e su l t s .  

summarized as follows: 

The wr i te r  has, however, ex- 

The r e s u l t s  of t h i s  examination may be 

1. 

20 

30 

4. 

One term of the model w e l l  approximates the hyperbolic 

operators up t o  the f i r s t  c r f t i c a l  frequencyo 

Two terms improve the approximation up t o  the f i r s t  

c r i t i c a l  point and roughly (not w e l l )  approximate the 

hyperbolic operators up beyond the  second c r i t i c a l  fre- 

quency. 

near t he  second c r i t f c a l  frequency. 

The use of one term of  the model gave good r e s u l t s  i n  

predicting the  t rans ien t  response representat ive of water 

hammer 

The model w a s  of good u t i l i t y  i n  solving two example prob- 

lems, one which had supporting experimental data. 

The use  of more terms would improve the results 



CHAPTER I V  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Suwaary 

The problem of modeling a f l u i d  transmission l i n e  has  been t r ea t ed  

i n  varying degrees of exactness. 

An exact so lu t ion  of the f i r s t -order  Navier-Stokes equation f o r  a 

compressible l i q u i d  w a s  obtained and found t o  demonstrate the existence 

of an  i n f i n i t e  s e t  of viscous modes of propagation. 

found t o  be predominate, with the  higher modes being generated near 

boundaries. The extent of propagation f o r  the higher modes depended 

upon the  frequency s ince  these modes had r e l a t i v e  cutoff frequencies 

below which there  w a s  considerable attenuation. 

flow v isua l iza t ion  method, the ac t ion  of the higher modes near an osc i l -  

l a t i n g  p is ton  w a s  experimentally observed. 

The zeroth mode w a s  

Through the  use of a 

A conduit model based upon a cross-sectional average of  the zeroth 

mode only w a s  derived i n  terms of a s e t  of t r ans fe r  type equations com- 

monly found i n  t h e  l i t e r a t u r e .  

equations proved t h e i r  v a l i d i t y  over a wide range of parameters, thus 

qualifying t h i s  as a useful engineering model. 

Experimental inves t iga t ion  of these 

A t h i r d  model, based upon r a t i o n a l  approximations of the zeroth 

mode t r ans fe r  equation model was derived and the parameters were ob- 

ta ined and recorded. This model was demonstrated t o  have usefulness 



where it is desired t o  study complex f l u i d  systems and where the mathe- 

matics involved i n  using the more sophis t icated models would prove 

unwieldy. 

An a n a l y t i c a l  inves t iga t ion  i n t o  the  e f f e c t s  of nonrigid walls w a s  

undertaken and demonstrated the dramatic and not-to-be-neglected e f f e c t  

which these walls can haveo 

e f f e c t  of an e l a s t i c  f l e x i b l e  w a l l  upon the  wave phase ve loc i ty  and 

s p a t i a l  a t tenuat ion as opposed t o  a r i g i d  w a l l .  For the  case presented, 

i t  w a s  found t h a t  the s p a t i a l  a t tenuat ion  was increased by approximately 

a thousandfold and the phase ve loc i ty  decreased by approximately 75 per 

Calculations were made t o  determine t h e  

cent i n  c e r t a i n  frequency ranges. 

Conclusions 

Z'he conclusions which have been reached as a r e s u l t  of t h i s  study 

a re  : 

1. I n  general ,  t he  f i r s t -o rde r  (acoust ic)  disturbances i n  a 

viscous f l u i d  transmission l i n e  cons is t  of an i n f i n i t e  

number of modes of viscous propagation. 

of each mode results from the necessi ty  of s a t i s fy ing  

boundary conditions. 

of each mode depends upon the  frequency. 

The conduit model based upon a cross-sectional average of 

the zeroth mode only i s  va l id  at least for the range of 

damping numbers and frequency numbers 

The exc i t a t ion  

The extent of s p a t i a l  propagation 

2. 

O,OOOl< D < 0.02 nz 

O,5 < F < 10.0, nz 



30 The conduft model based upon r a t iona l  approximations 

of the zeroth mode transfer equation model is useful 

f o r  s t u d y i n g  the dynamic response of complex flu9d 

systems 

W a l l  e l a s t i c i t y  e f f e c t s  should be considered when 

modelfng f l u i d  tranmission l f n e s  wPth increases fn 

the  s p a t i a l  a t tenuat ion of the  order of 1000 and de- 

creases  i n  the phase veloci ty  of the order of 75 per  

cent demonstrated f o r  one case i n  t h i s  t r ea t i s e .  

4, 

Recommendations for Future Study 

Areas which it is  f e l t  are worthy of fu ture  study include: 

lo Invest igat ion of the e f f e c t  of a ne t  flow upon dis-  

turbance propagation. This inves t iga t ion  should 

include laminar and turbulent flowo 

Invest igate  fur ther  the e f f e c t s  of nonrigid walls 

upon viscous propagation, 

Look i n t o  the effect of discontinufit%@s and mn-unfform 

cross-sectional area upon viscous propagation i n  a 

f l u i d  condu3.to 

2. 

3, 
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CALCULATION OF EIGENVALUES 

The purpose of t h i s  Appendix is t o  demonstrate the ca lcu la t ion  

procedure used t o  obtain the eigenvalues from the cha rac t e r i s t i c  

equations. 

Consider Equations (3 .32 )  and (4.31, or  

and 

which are the cha rac t e r i s t i c  equations for the  

f l u i d  condutt. I n  order t h a t  the ca lcu la t ions  

s ion less  numbers, def ine 

G = Y r  n n o  

Bn = pnro 

k = knro 

FN = sro/co 

n 

and 

eigenvalues of a r i g i d  

can be based upon dimen- 

DN = v/coro 

where each is dimensionless. 

144 



Equations ( A . 1 )  and ( A 0 2 )  now become 

and 

The ac tua l  ca lcu la t ion  here m u s t  be a numerical trial and e r ro r  proce- 

dure. Hence, define 

and start the calculat ion by assuming a value fo r  Bn. 

t o  ca lcu la te  Kn and Gn from Equation (A.3).  

a given value of F and D) we can ca lcu la te  E. 

adjust  Bn, ca lcu la te  dE/dBn and ad jus t  Bn from t h e  equation 

This is then used 

Knowing Bns Gn, and & ( f o r  

I n  order t o  know how t o  

where B represents  the new value and B the previous value. A list- 

ing  of the computer program used t o  perform these ca lcu la t ions  i s  given 

on the following page, 

n l  nO 

The da ta  read i n  are: 

DM = 

FNO = 

DFN = 

FNM = 

Box = 

BOY = 

damping number 

i n i t i a l  value of frequency number 

increment i n  frequency number 

m a x i m u m  value of frequency number 

starting value of Real (Bn) 

s t a r t i n g  value of Imaginary (Bn) 
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C 

20 
2 1  
22 
1 
2 

10 
7 

3 
4 

5 

6 

8 
9 

11 
12 

C A L C U L A T I O N  OF H I G H E R  MODE E I G E N V A L U E S  
COMPLEX B * F I C K I C K ~ , R J B * R J K * C T ~ * C T ~ * E  
COMPLEX T t r T 2 , T 3 * T 4 , T S r D B r G 2 , G  
F O R M A T ( 7 F l O o 8 )  
FORMAT( 7F11.8 1 
F O R M A T 1 2 X ~ F l l . 8 ~ 2 E l 5 0 8 ~ 2 X ~ 2 E l 5 ~ 8 )  
READ(~*~O)DN*FNO*DFNIFNM*BOX*BOY*ER 
W R I T E ( ~ * ~ ~ ) D N I F N O I D F N * F N M * B O X , B O Y , E R  
B=CMPLX(BOXIBOY) 

F = C M P L X ( O ~ S F N )  
CK2=B**2+F**2-F /DN 
C K = C S Q R T t C K 2 )  
I F ( A I M A G ( C K 2 ) ) 3 r 4 * 4  
CKn-CK 

C A L L  J O O R J l ( 8 , R J B I  
G2=B**2+F**2 
C T l = C K * B * R J B  
CT2=G Z*R J K  
E=C T 1-CT 2 
R l = C A B S ( E ) / C A B S ( C T l )  
I F ( R l - E R 1 6 r 6 ~ 5  
T l = R J B * ( B * * Z / C K + C K )  
T2=B*CK*(  ( l . r O e ) - R J B / B + R J R * * 2 )  
T3=2.*R*RJK 
T 4 = ( B / C K I * G 2 * ( ( 1 . , O e ) - R J K / C K + R J K * * 2 )  
T 5 = T l + T 2 - T 3 - T 4  
DB=-E / T 5  
B=B+DB 
GO TO 7 
G=CSQRT ( G 2  1 
I F ( A I M A G ( G 2 ) ) 8 * 9 * 9  
G=-G 
C X = R E A L ( G )  
G Y = A I M A G ( G  ! 
CCO=FN/GY 
W R I T E ( 6 r 2 2 1 F N * G X * C C O , B  
FN=FN+DFN 

GO TO 1 
STOP 
END 

FN=FNO 

C A L L  J O O R J l ( C K * R J K )  

I F ( F N - F N M ) ~ o ~ ~ ~ ~ ~ ~  



C 

100 

101 

110 
111 

112 
113 

120 

121 

122 

116 

114 
115 

117 
Z 19 

SUBROUTINE JOORJlltrRJ) 

COMPLEX Z ~ J 1 ~ J O ~ T E R M O r T E R M l r Z l ~ Z 2 ~ P O r Q O ~ P l ~ Q l ~ P H O ~ P H l ~ F Z l ~ ~ Z 2 ~ ~ J  
CALCULATION OF JOZ AND J1Z 

XIREAL ( Z 1 
Y=AIMAG(Z) 
R=tABS( Z 1 
IF(R-X8e)100r100~110 
TERMlzZ/Ze 
Jl=Z/2e 
JO=(le~Oel 
TERMO=(lerOe) 
As1 e 
A M n 7 e + R  
T E R M O P T E R M O * ( - ( Z / ~ . ) * * ~ ) / A + + ~  

T E R M ~ ~ T E R M ~ * ~ - ( Z / ~ ~ ) * * Z ) / ( ( A + ~ O ) * A )  
JO= JO+TERMO 

Jl=JltTERMl 
A=A+1 e 
IF~A-AM)lOlrlOlrll5 
IF(X)lllr112r112 
21s-2 
GO TO 113 
Zl=Z 
PI=301415926 
2258. *z1 
IF(CABS(ZZ)-5000.)120rl20~121 
PO~(le,0.)-4e5/Z2**2+3675e/~8~*22~*4) 
Q0~-1./22+37.5/22**3-59535e/(8e*Z2~*5) 
Pl~(lerO.)+705/Z2**2-4725e/(8e*Z2**4) 
Q 1 = 3 e / Z 2 - 5 2 e 5 / Z 2 * * 3 + 6 6 1 5 a / ( 8 . + 2 2 + + 5 )  
GO TO 122 
PO= f 1 e r o e  1-40 5/Z2**2 
QO=-le/Z2 
Pl=(lerOe)+7e5/Z2*+2 
Q1~3./22 
PHO=Zl-P1/4e 
PHl=Z 1-e75*PI 
FZ1=2e/PI*Zl 
FZZ=CSQRT(FZl) 
AZl=AIMAG(Zl) 
I F ~ A B S ~ A Z 1)-50.)116~116~11~ 
JO=FZZ*(PO+CCOS(PHO)-QO*CSIN(PHO)) 
Jl=FZZ*(Pl*CCOS(PH1)-Ql*CSIN(PHl)) 
IF(X)114tll5r115 
Jlp-Jl 
RJ=Jl/JO 
GO TO 119 

RETURN 
END 

R J ~ ~ ~ O ~ ~ l ~ ~ * P l + Q l ~ / ~ P O ~ I O . r l . ) W Q O ~  
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INVERSE LAPLACE TRANSFORMATION FOR 

VISCOUS WATER HAMMER PROBLEM 

I n  t h i s  Appendix, the method employed i n  the calculat ion of the 

pressure h is tory  f o r  the viscous water hammer problem, as presented i n  

Chapter I V ,  w i l l  be given. 

It has been shown (Chapter IV) tha t  the transformed pressure re- 

sponse output t o  a transformed ve loc i ty  input i s  

where 

and 

Putting V ( s )  = -Vo/s, which represents  the transformed input due t o  

sudden valve closure;  V, being the i n i t i a l  f l u i d  ve loc i ty  before 



closure,  g ives  

The inverse transformation of Equation (Be2)  may be wr i t ten  as 

This summation w i l l  now be evaluated. 

For convenience, Equation (B.3) may be written i n  the form 

The poles which contr ibute  residues t o  the above summation are given by 

or 

rcSh) = LL (v2 + r;rr). 
The corresponding residues a re  given by 

A l i s t i n g  of the computer program wr i t ten  to ca lcu la te  and sum these 

residues is given on the  following page. 
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2 
11 
1 

4 

1 3  
14 

15 
16 

5 

6 

7 

8 

10 

1 2  
17 

VISCOUS WATER HAMMER PROBLEM 
COMPLEX F ~ 1 0 0 ) r T l ~ T ~ r T 3 ~ T 4 ~ 1 O O ) r F C ~ l O O l r ~ l C r T 2 C r l 3 C r T 4 C ~ l O O ~ r S U M  
COMPLEX FNrFKNROrFFrDIF l tFNl rE2eE3r fNN,E4rRJ  
FORMAT(I5,5F10.7) 
F O R M A T ( ~ X I F I S ~ ~ O E ~ ~ ~ ~ ~ E ~ ~ ~ ~ )  
R E A D ( S r Z ) N M r D N r D T e T M , C , T O  
W R I T E ( 6 r Z ) N M r D N s D T e T M , C , T O  
DO 7 N - l r N M  
PI=3.1415926 
A*N-1 
P l = ( A + e 5 ) * P I  
E l = e 0 0 0 1  
F N N = C M P L X f E l r P l )  
FN=FNN 
E2s-FN / DN 
FKNRO=CSQRT(EZ) 
I F ( A I M A G I E 2 ) ) 1 3 r l 4 r l 4  
FKNRO=-FKNRO 
C A L L  JOORJ~(FKNROIRJ) 
FF=( le rOe) -2e*RJ /FKNRO 
ZERO=Oe 
E3=CMPLXIZEROePl)  
E4=CSQRT(FF) 
I F ( A I M A G ( F F ) l 1 5 r l 6 r l 6  
E4=-E4 

O I F l = ( F N l - F N ) / F N l  
DIFZ=(CARS(FNl)-CABS(FN))/CA8S(FNl) 
I F ( D I F 2 - G ) 6 9 6 + 5  
FN=FN 1 
GO TO 4 
F ( N  ) =FN1 
Tl=F(N)**2/((A+eS)*P1)**2 
T Z = F ( N ) / t D N * T l )  

FN l=E3*E4  

T 3 = e 5 + T 2 * ( 1 e + T l l * * 2 / 8 e  
T 4 ( N ) = F ( N ) * ( l e + T 3 )  

TlC=FC(N)**Z/((A+e51*P1)**2 

T ~ C = O ~ + T Z C * ( ~ O + T ~ C ) * * Z / ~ ~  
T 4 C ( N ) = F C ( M ) * ( l e + T 3 C )  
T=TO 
SUM=(OetOe) 
DO 10 N X l r N M  
SUM=SUM+CEXP(F(N)*T)/T4(N)+CEXP(FC(N)*Tl/T4C(N) 
W R I T E ( 6 r l l ) T * S U M  
T=T+DT 
I F ( T - T M ) 8 * 8 r 1 2  
GO TO 1 
STOP 

F C ( N ) = C O N J G ( F ( N ) )  

TZC=FC(N) / (DN+T lC)  
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C 

2 
3 
4 
1 

90 

' 9 1  
92 

93 
94 

8 
9 

C A L C U L A T I O N  O F  Z C  
C O M P L E X  C F N T G Z T F K N R O , F F , G ~ ~ Z S R J  
F O R M A T ( 4 F 1 5 . 8 )  
F O R M A T ( l F 1 5 s 8 )  
F O R M A T ( ~ X T ~ F ~ ~ . ~ , ~ X , E ~ ~ O ~ ~ Z X ~ ~ ~ ~ . ~ ~  
R E A D ( ~ , ~ ) D N , F N O I O F N , F N M  
W R I T E ( 6 r 3 ) D N  
F N = F N O  
PI=3.1415926 
C F N = C M P L X ( O m v F N )  
G 2 = - C F N / D N  
F K N R O = C S Q R T ( G Z )  
I F  ( A I M A G L  G 2  1 1 9 1  992 992 
FKNRO=-FKNRO 
C A L L  J O O R J l ( F K N R 0 r R J )  
F F = ( l * r O . ) - Z . U R J / F K N R O  
G 4 = C S Q R T ( F F )  
I F ( A I M A G ( F F 1 1 9 3 9 9 4 9 9 4  
G 4 = - G 4  
Z = 1  / G 4  
Z X = R E A L ( Z )  
Z Y = A I M A G ( Z )  
A Z = C A B S ( Z )  
P H Z z A T A N 2  ( Z X  v Z Y  1 

W R I T E ( 6 , 4 ) F N , A Z 1 P H Z D  
F N =  F N + D F N  
I F ( F N - F N M ) 9 0 r 9 0 , 8  
GO T O  1 
S T O P  
E N 0  

P H Z D = ( 1 8 0 ~ / 3 e 1 4 1 5 9 2 6 ) w p H Z  

C 

2 
3 
4 
1 

90 

9 1  
9 2  

93 
94 

8 
9 

C A L C U L A T I O N  O F  GAMMA 
C O M P L E X  CFN*GZ,FKNRO,FF9G4rGAMA,RJ  
F O R M A T ( 4 F 1 5 . 8 )  
F O l : M A T ( l F 1 5 . 8 1  
F O R M A T ( 2 X ~ l F 1 5 ~ 4 , 4 X v E 1 5 * 8 ~ 2 X ~ E l 5 ~ 8 )  
R E A O ( 5 * 2 ) D N , F N O , D F N , F N M  
WKI T E ( 6 9 3 )  DN 
F N = F N O  
P I = 3 . 1 4 1 5 9 2 6  
C F N = C M P L X I O o , F N )  
G Z = - C F N / D N  
F K N R O = C S Q R T ( S 2 )  
I F ( A I M A G ( G 2 )  I 9 1 9 9 2 9 9 2  
F K N R O = - F  KNR 0 
C A L L  J O O R J l ( F K N R 0 , R J )  
F F = ( l . , O . ) - Z . * R J / F K N R O  
G 4 = C S Q R T ( F F )  
I F ( A I M A G ( F F )  ) 9 3 9 9 4 $ 9 4  
G 4 = - G 4  
G A M A = C F N / G 4  
G X = R E A L ( G A M A )  
G Y = A I M A G ( G A M A )  
C C O = F N / G Y  
W R I T E ( ~ , ~ ) F N , G X I C C O  
F N = F N + D F N  
I F ( F N - F N M ) 9 0 3 9 0 , 8  
GO TO 1 
S T O P  
E N 0  



€ 

2 
3 
4 
1 

9 0  

* 9 1  
9 2  

9 3  
9 4  

6 
7 

1 0  
11 

FREQUENCY RESPONSE OF L I N E  WITH CONST. PRESS. TERMINATION 
COMPLEX CFN,G~~FKNROIFF,G~~GAMA,RJICOSHGISINHGIPOV 
FORMAT(4F15.8) 
FORMAT1///,15X,lF15.8,//) 
F O R M A T ( 1 F 1 5 ~ 2 r 5 X ~ 1 E 1 5 . 8 , 5 X 1 1 E 1 5 . 8 )  

READ(5,2)DNsFNOiDFN,FNM 
W R I T E ( 6 r 3 ) D N  
FN=FNO 
PI=3.1415926 
CFN=CMPLX(O.+FN) 
GZ=-CFN/DN 

I F ( A I M A G ( G 2 )  ) 9 1 , 9 2 + 9 2  
FKNROz-FKNRO 
C A L L  JOORJl(FKNR0,RJ) 
FF=(1.+0.)-2o*RJ/FKNRO 
G4=CSQRT(FF) 
I F ( A I M A G ( F F ) ) 9 3 , 9 4 t 9 4  
G4=-G4 
GAMA=CFN/G4 
COZHG=(CEXP(GAMA)+CEXP(-GAMA))/Ze 
SINHG=(CEXP(GAMA)-CEXP(-GAMA))/Z* 

FKNRO=CSQRT(GZ) 

POV=GAMA*SINHG/(CFN*COSHG) 
RPV=CABS( POV) 

PVX=REAL(POV) 
PVY=AIMAG(POV) 
PHPV=ATAN(PVY/PVX) 

RPVDB=20.*ALOGlO(RPV) 

I F ( P V X l 6 t 7 r 7  

PHfVD=PHPV*180*/PI  
W R I T E  ( 6 9 4 )  FNtRP\/DB,PlHPVD 
FN= F N+DF N 
I k ( F N - F N M ) 9 0 r 9 0 , 1 0  
GO TO 1 
S TOP 
END 

PHPV=PHPV+PI 

C 

11 

4 

1 3  

6 

7 
9 
1 0  

CALCULATION OF ZEROES OF SINHG 
COMPLEX FN,F~NRO*FF,DIFl,FNl,EZ,E3,FNN,E4tRJ 
FORMAT ( F  15.8 9 I 1  5 ,F 15.8)  
FORMAT(2Xr lF15.8)  
FORMAT( 7X13F15.5)  
REtID ( 5 92 )  ONINM~G 
W R I  T E ( 6 9 3 )  DN 
DO 7 N = l t N M  
P I=3 .1415926  
T=N 
P l = T + P I  
E 1 =  0001 
F N N = C M P L X ( E l * P l )  
FN=FNN 
E 2 =-FN/DN 
FKI,RO=CSQRT ( E 2 )  
I F ( A f M A G ( E 2 ) ) 1 3 9 1 4 * 1 4  
FKNROz-FKNRO 
GU TO 4 
F N X l = R E A L ( F N l )  
F N Y l r A I M A G ( F N 1 )  
D = l . + ( ( F N Y l / F N X 1 ) * * 2 )  
ZETA=SQRT( l . /D)  
FUD=-FNXl/ZETA 
ALPHArFNXl  
FND=FNYl 

GO TO 1 
STOP 
END 

WRITE(698)DN*ZETA*FUD 
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C 

20  
2 1  
22 
1 
2 

10 
7 

3 
4 

5 

6 

8 
9 

11 
1 2  

E L A S T I C  W A L L  F L E X I B L E  
€OMPLEX B,F ,CK9CKZ,RJBtRJK,CTl *CT2*E 
COMPLEX T l , T 2 , T 3 , T 4 , T 5 , T b , T 7 , D B , G 2 , G , E E  
F O R M A T ( 7 F 1 0 0 8 * 2 F 5 o 2 1  
F O R M A T ( 7 F l l o 8 , 2 F 6 e 3 )  
F O R M A T ( ~ X ~ F ~ ~ O ~ , ~ E ~ ~ ~ ~ ~ Z X ~ ~ E ~ ~ O ~ )  
R E A D ( ~ ~ Z O ~ D N , F N O I D F N , F N M , B O X ~ B O Y ~ E R I P ~ , P ~  
W R I T E ( ~ ~ ~ ~ ) D N ~ F N O I D F N , F N M , B O X , B O Y , E R I P ~ , P Z  
Ba.CMPLX ( B O X  ,BOY 1 
FN=FNO 

CK2=B**Z+F**2 -F /DN 
C K = C S Q R T ( C K 2 )  
I F ( A I M A G ( C K 2 1 ) 3 , 4 r 4  
C K z - C K  

C A L L  J O O R J l ( 6 , R J B )  

F = C M P L X ( O o r F N )  

C A L L  J O O R J l ( C K 9 R J K )  

GZ=B**2+F**2  
C T l = C K * B * R  J B  
C T Z = G 2 * R J K  
E z C T l - C T 2  
T 6 = ( P l * ( F * * 2 1 ) + P 2  
E E = E - ( C K * ( F * * 2 ) ) / T 6  
R l = C A B S ( E E ) / C A B S ( E )  
I F ( R l - E R 1 6 r 6 9 5  
T l = R J B *  ( B**Z /CK+CK 1 
T2=B*CK*((le,Oe)-RJB/B+RJB**Zl 
T 3=2  e+B*RJK 
T4=(B/CK)*GZ*((lm,O*)-RJK/CK+RJK**2) 
T 5 = T l + T Z - T 3 - T 4  
T7=T5-(B*(F**Z))/(CK*T6) 
DB=-EE/  T 7  
B=B+DB 
GO TO 7 
G = C S Q R T ( G Z )  
I F ( A I M A G ( G 2 ) ) 8 * 9 , 9  
G=-G 
G X = R E A L ( G )  
G Y = A I M A G ( G )  
CCO=FN/GY 
W R I T E ( ~ , ~ ~ ) F N I G X , C C O , B  
FN=FN+DFN 
I F ( F N - F N M 1 1 0 , 1 0 , 1 1  
GO T O  1 
S T O P  
END 



LIST OF SYMBOLS 

.A 

B 

C 

C 
0 

C 
V 

c 

c 
4 

V 

D 

D - 
Dt 

Di 

DO 

Dm 

nz D 

F 
- 

cn 

nx 

F 

F 

nz F 

sn F 

Fzn(r > 
f 

Constant a t  in tegra t ion  
Conduit cross-sect ional  area 

Constant of in tegra t ion  

Phase ve loc i ty  

I sen t ropic  speed of sound i n  f l u i d  

Specif ic  heat ,  constant volume 

Conduit capacitance based on f l o w  r a t e  

Conduit capacitance based on ve loc i ty  

Conduit capac.itance based on weight f l o w  r a t e  

Conduit diamerer 

Sub s t a n t  i a  1 der iva t ive  

Conduit ins ide  diameter 

Conduit o J t s ide  diameter 

Radial damping number, v/roco 

Axial damping number, vL/coro2 

Vector body force per un i t  mass 

Axial frequency number for  n th  zero of cosh I? 

Radial frequency number, w ro/co 

Axial frequency number, w L/co 

Axial frequency number for  n th  zero of s inh  r 
Axial ve loc i ty  p r o f i l e  function for  t h e  n th  mode 

Tube w a l l  facfior, defined by Equation (2.35) 
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Acceleration due t o  grav i ty  

Imaginary un i t ,  

Electr ical  current  a t  point  j 

Fluid  inertance based on flow ra t e  

Fluid iner tance based on ve loc i ty  

F lu id  inertance based on weight flow ra t e  

Bessel function of order zero and argument x 

Bessel function of order one and argument x 

Eigenvalue defined i n  Equation (3 .24 )  

Eigenvalue fo r  nth mode 

Conduit length 

E l  ec tr  ica  1 l y  equiva len t  inductance 

Index number 

Fluid pressure 

Zeroth order f l u i d  pressure 

F i r s t  order f l u i d  pressure 

Transformed pres  sur e 

Transformed pressure a t  point j 

Average transformed pressure a t  point j 

F lu id  flow rate 

Vector heat flow r a t e  

Radial coordinate posi t ion 

Unit vector i n  r a d i a l  d i rec t ion  

Conduit inner rad ius  

Resistance coef f ic ien t ,  Equation (2.9) 

Laplace var iab le  

Time 

.J -l 
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Q 
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T emp er  a t ur e 

Vector f l u i d  ve loc i ty  

Zeroth order vector f l u i d  ve loc i ty  

F i r s t  order vector f l u i d  ve loc i ty  

F i r s t  order transformed r a d i a l  ve loe i ty  

F i r s t  or der t r ans  f ormed axia 1 veloc it y 

F i r s t  order transformed a x i a l  ve loc i ty  for  the  iith mode 

Average transformed a x i a l  ve loc i ty  a t  posi t ion j 

Axia 1 c oor dinat e 

Character is t ic  impedance 

hverage impedance a t  posi t ion j 

Eigenvalue defined i n  Equation (3.25) 

Eigenvalue for nth mode 

Eigenvalue defined i n  Equations (3.24) and (3.25) 

Eigenvalue for  nth mode 

Real pa r t  of 

Imaginary par t  of 

Propagation operator,  L 

Real par t  of I' 

Imaginary par t  of r 
Damping r a t i o  for  nth zero of cosh r 
Damping r a t i o  for  nth zero of s inh r 
Unit vector i n  8 di rec t ion  

Bulk modulus of e l a s t i c i t y  of f l u i d  

Absolute shear v i scos i ty  

Absolute d i l i t a t i o n a l  v i scos i ty  

Absolute bulk v iscos i ty  
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P 1  

Lu 
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kinematic shear v i scos i ty  

Fluid m a s s  densi ty  

Zeroth order densi ty  

F i r s t  order densi ty  

Tube w a l l  densi ty  

Scalar f i e l d  

Transformed scalar f i e l d  

Dissipation function 

Magnitude of vector f i e l d  J' 

Vector f i e l d  

Angular frequency 

Vector operator de l  

I 


